文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

YOLOV8改进:在C2f模块不同位置添加注意力机制

2023-09-04 06:13

关注

本文以CBAM注意力机制为例,在c2f模块的不同位置添加注意力机制,没有用v8自带的CBAM模块,而是自己之前用过的代码。

CBAM简单介绍:

CBAM这是一种用于前馈卷积神经网络的简单而有效的注意模块。 给定一个中间特征图,我们的模块会沿着两个独立的维度(通道和空间)依次推断注意力图,然后将注意力图乘以输入特征图以进行自适应特征修饰。 由于CBAM是轻量级的通用模块,因此可以以可忽略的开销将其无缝集成到任何CNN架构中,并且可以与基础CNN一起进行端到端训练。

1.第一步,在ultralytics/nn/modules.py文件中添加CBAM注意力机制

########CBAMclass ChannelAttentionModule(nn.Module):    def __init__(self, c1, reduction=16):        super(ChannelAttentionModule, self).__init__()        mid_channel = c1 // reduction        self.avg_pool = nn.AdaptiveAvgPool2d(1)        self.max_pool = nn.AdaptiveMaxPool2d(1)        self.shared_MLP = nn.Sequential(            nn.Linear(in_features=c1, out_features=mid_channel),            nn.LeakyReLU(0.1, inplace=True),            nn.Linear(in_features=mid_channel, out_features=c1)        )        self.act = nn.Sigmoid()        # 

来源地址:https://blog.csdn.net/m0_51530640/article/details/129458744

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯