文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python中怎么实现一个抽样回归算法

2023-06-19 10:44

关注

本篇文章为大家展示了python中怎么实现一个抽样回归算法,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

12 抽查回归算法

1 算法概要

讨论以下算法 线性算法

解决的问题是波士顿房价问题。 所有参数都是数字型的。 用上述算法来做抽样, 然后用mean squared error 均方误差 来估计结果。

12.1 线性学习算法

12.1.1 线性回归

线性回归假设输入变量有是遵守高斯分布。 而每种特征和结果都有关联, 但是各自之间并没有强关联。

线性回归, 就是把样本的点拟合成一条线, 这条线最大程度可以反应数据的规律。

# Linear Regressionfrom pandas import read_csvfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import LinearRegressionfilename = 'housing.csv'names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO','B', 'LSTAT', 'MEDV']dataframe = read_csv(filename, delim_whitespace=True, names=names)array = dataframe.valuesX = array[:,0:13]Y = array[:,13]kfold = KFold(n_splits=10, random_state=7)model = LinearRegression()scoring = 'neg_mean_squared_error'results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)print(results.mean())# -34.7052559445

12.2.2 岭回归

什么叫岭回归呢。 它是线性回归的一种扩展。 这里可以简单说两句几个基本概念。

  1. 正规方程. 理解就是矩阵直接求逆然后来求导.

  2. 高斯牛顿法. 应用泰勒展开,

这节是岭回归, 下一节是LASSO 回归

# Ridge Regressionfrom pandas import read_csvfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import Ridgefilename = 'housing.csv'names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO','B', 'LSTAT', 'MEDV']dataframe = read_csv(filename, delim_whitespace=True, names=names)array = dataframe.valuesX = array[:,0:13]Y = array[:,13]num_folds = 10kfold = KFold(n_splits=10, random_state=7)model = Ridge()scoring = 'neg_mean_squared_error'results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)print(results.mean())# -34.0782462093

12.2.3 LASSO 回归

# Lasso Regressionfrom pandas import read_csvfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import Lassofilename = 'housing.csv'names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO','B', 'LSTAT', 'MEDV']dataframe = read_csv(filename, delim_whitespace=False, names=names)array = dataframe.valuesX = array[:,0:13]Y = array[:,13]kfold = KFold(n_splits=10, random_state=7)model = Lasso()scoring = 'neg_mean_squared_error'results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)print(results.mean())# -34.4640845883

12.2.4 ElasticNet 回归

ElasticNet 回归综合了岭回归和LASSO 回归, 也就是说添加了L1正则, 和L2正则。 来看看效果。

# ElasticNet Regressionfrom pandas import read_csvfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import ElasticNetfilename = 'housing.csv'names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO','B', 'LSTAT', 'MEDV']dataframe = read_csv(filename, delim_whitespace=True, names=names)array = dataframe.valuesX = array[:,0:13]Y = array[:,13]kfold = KFold(n_splits=10, random_state=7)model = ElasticNet()scoring = 'neg_mean_squared_error'results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)print(results.mean())# -31.1645737142

12.3 非线性机器学习模型

12.3.1 K近邻

K近邻是基于距离的一种算法。 在训练集中找到k个和这个新的纪录的距离最近的。 一个平均值作为预测结果。

# KNN Regressionfrom pandas import read_csvfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import cross_val_scorefrom sklearn.neighbors import KNeighborsRegressorfilename = 'housing.csv'names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO','B', 'LSTAT', 'MEDV']dataframe = read_csv(filename, delim_whitespace=False, names=names)array = dataframe.valuesX = array[:,0:13]Y = array[:,13]kfold = KFold(n_splits=10, random_state=7)model = KNeighborsRegressor()scoring = 'neg_mean_squared_error'results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)print(results.mean())# -107.28683898

12.3.2 CART

# Decision Tree Regressionfrom pandas import read_csvfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import cross_val_scorefrom sklearn.tree import DecisionTreeRegressorfilename = 'housing.csv'names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO','B', 'LSTAT', 'MEDV']dataframe = read_csv(filename, delim_whitespace=False, names=names)array = dataframe.valuesX = array[:,0:13]Y = array[:,13]kfold = KFold(n_splits=10, random_state=7)model = DecisionTreeRegressor()scoring = 'neg_mean_squared_error'results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)print(results.mean())# -34.74746

12.3.4 SVM

注意 这里的SVM 是基于LIBSVM 包的。

# SVM Regressionfrom pandas import read_csvfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import cross_val_scorefrom sklearn.svm import SVRfilename = 'housing.csv'names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO','B', 'LSTAT', 'MEDV']dataframe = read_csv(filename, delim_whitespace=False, names=names)array = dataframe.valuesX = array[:,0:13]Y = array[:,13]num_folds = 10kfold = KFold(n_splits=10, random_state=7)model = SVR()scoring = 'neg_mean_squared_error'results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)print(results.mean())# -91.0478243332

上述内容就是python中怎么实现一个抽样回归算法,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯