文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python底层技术揭秘:如何实现图算法

2023-11-08 16:35

关注

随着计算机技术的不断发展,图论(graph theory)及其相关算法已经成为了计算机领域中非常重要的一部分。而对于Python程序员来说,掌握这些底层技术不仅可以提高代码的效率和质量,还有助于优化程序的性能和开发效率。

本文将介绍Python实现图算法的底层技术,包括图的存储方式、遍历方式、最短路径算法、最小生成树算法以及拓扑排序算法,重点介绍各算法的实现思路和代码示例。

一、图的存储方式

在Python中,我们可以使用邻接矩阵或邻接表来存储图。

1、邻接矩阵

邻接矩阵是一个二维矩阵,其中顶点的行和列分别对应两个顶点。如果两个顶点之间有边相连,则该位置值设为1或其边权值;否则设为0。例如,下面是一个邻接矩阵的例子:

graph = [[0, 1, 1, 0], 
         [1, 0, 1, 1], 
         [1, 1, 0, 1], 
         [0, 1, 1, 0]]

这个矩阵表示一个无向图,共有4个顶点,其中1、2、3之间互相有连边。

2、邻接表

邻接表是一个字典,其中每个键对应一个顶点,对应的值是该顶点的邻居顶点列表。例如:

graph = {0: [1, 2], 
         1: [0, 2, 3], 
         2: [0, 1, 3], 
         3: [1, 2]}

这个字典表示同样的无向图,其中每个键值对应一个顶点,这个顶点对应的值是这个顶点和其它顶点之间的连边。

二、图的遍历方式

1、深度优先遍历(DFS)

深度优先遍历是搜索所有子树的深度方向,也就是先访问当前顶点,然后递归访问它的每一个邻居顶点。对于每个顶点,我们必须记住它是否被访问过;如果未访问,就递归遍历它的邻居顶点。代码实现:

def dfs(graph, start, visited=None):
    if visited is None:
        visited = set()
    visited.add(start)
    print(start)
    for next_vertex in graph[start] - visited:
        dfs(graph, next_vertex, visited)
    return visited

2、广度优先遍历(BFS)

广度优先遍历是搜索所有子树的广度方向,也就是先访问当前顶点,然后访问它的所有邻居顶点。对于每个顶点,我们必须记住它是否被访问过;如果未访问,就加入队列中并标记为已访问,然后递归它的邻居顶点。代码实现:

from collections import deque

def bfs(graph, start):
    visited, queue = set(), deque([start])
    visited.add(start)
    while queue:
        vertex = queue.popleft()
        print(vertex)
        for next_vertex in graph[vertex] - visited:
            visited.add(next_vertex)
            queue.append(next_vertex)

三、图算法

1、最短路径算法

最短路径算法是寻找图中两个顶点之间最短路径的算法。其中,Dijkstra算法用于有向无环图(DAG),Bellman-Ford算法适用于任何图。

(1)Dijkstra算法

Dijkstra算法用于有向无环图,并且只能处理非负权值的图。该算法的核心是贪心策略,即假定路径是由许多独立的单元(节点)组成的,对每个单元的最短路径进行逐一考虑,找到全局最短路。代码实现:

import heapq
import sys

def dijkstra(graph, start):
    visited = set()
    distance = {vertex: sys.maxsize for vertex in graph}
    distance[start] = 0
    queue = [(0, start)]
    while queue:
        dist, vertex = heapq.heappop(queue)
        if vertex not in visited:
            visited.add(vertex)
            for neighbor, weight in graph[vertex].items():
                total_distance = dist + weight
                if total_distance < distance[neighbor]:
                    distance[neighbor] = total_distance
                    heapq.heappush(queue, (total_distance, neighbor))
    return distance

(2)Bellman-Ford算法

Bellman-Ford算法能够处理任何图,包括负权值的图。该算法通过动态规划的方式来解决最短路径问题。代码实现:

import sys

def bellman_ford(graph, start):
    distance = {vertex: sys.maxsize for vertex in graph}
    distance[start] = 0
    for _ in range(len(graph) - 1):
        for vertex in graph:
            for neighbor, weight in graph[vertex].items():
                total_distance = distance[vertex] + weight
                if total_distance < distance[neighbor]:
                    distance[neighbor] = total_distance
    return distance

2、最小生成树算法

最小生成树问题是寻找无向加权图的所有顶点所构成的子图,使得该子图中所有边的权值之和最小。其中,Kruskal和Prim算法都是解决该问题的经典算法。

(1)Kruskal算法

Kruskal算法是一种贪心算法,从所有边中选取权值最小的边,依次寻找下一条权值最小的边,直到顶点数与边数匹配为止。代码实现:

def kruskal(graph):
    parent = {}
    rank = {}
    for vertex in graph:
        parent[vertex] = vertex
        rank[vertex] = 0
    minimum_spanning_tree = set()
    edges = list(graph.edges)
    edges.sort()
    for edge in edges:
        weight, vertex1, vertex2 = edge
        root1 = find(parent, vertex1)
        root2 = find(parent, vertex2)
        if root1 != root2:
            minimum_spanning_tree.add(edge)
            if rank[root1] > rank[root2]:
                parent[root2] = root1
            else:
                parent[root1] = root2
                if rank[root1] == rank[root2]:
                    rank[root2] += 1
    return minimum_spanning_tree

(2)Prim算法

Prim算法开始任选一个顶点作为起点,每次根据当前生成树与图中其它顶点的距离,以及其它顶点与当前生成树的最小距离来选择一个新的顶点加入到生成树中。代码实现:

import heapq

def prim(graph, start):
    minimum_spanning_tree = set()
    visited = set(start)
    edges = list(graph[start].items())
    heapq.heapify(edges)
    while edges:
        weight, vertex1 = heapq.heappop(edges)
        if vertex1 not in visited:
            visited.add(vertex1)
            minimum_spanning_tree.add((weight, start, vertex1))
            for vertex2, weight in graph[vertex1].items():
                if vertex2 not in visited:
                    heapq.heappush(edges, (weight, vertex1, vertex2))
    return minimum_spanning_tree

3、拓扑排序算法

拓扑排序算法主要用于处理有向无环图中的逻辑依赖关系,通常用来解决编译依赖或任务调度问题。代码实现:

from collections import defaultdict

def topological_sort(graph):
    in_degree = defaultdict(int)
    for vertex1 in graph:
        for vertex2 in graph[vertex1]:
            in_degree[vertex2] += 1
    queue = [vertex for vertex in graph if in_degree[vertex] == 0]
    result = []
    while queue:
        vertex = queue.pop()
        result.append(vertex)
        for next_vertex in graph[vertex]:
            in_degree[next_vertex] -= 1
            if in_degree[next_vertex] == 0:
                queue.append(next_vertex)
    if len(result) != len(graph):
        raise ValueError("The graph contains a cycle")
    return result

四、总结

本文介绍了Python实现图算法的底层技术,包括图的存储方式、遍历方式、最短路径算法、最小生成树算法以及拓扑排序算法,通过具体的代码示例,让读者了解每种算法的实现思路和代码实现细节。在实际开发过程中,读者可以根据自己的需求选择不同的算法,以提高程序的效率和质量。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯