文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python实战爬虫之女友欲买文胸不知何色更美

2024-04-02 19:55

关注

情景再现

今日天气尚好,女友忽然欲买文胸,但不知何色更美,遂命吾剖析何色买者益众,为点议,事后而奖励之。

本文关键词

协程并发😊、IP被封😳、IP代理😏、代理被封😭、一种植物🌿

挑个“软柿子”

打开京东,直接搜 【文胸】,挑个评论最多的

进入详情页,往下滑,可以看到商品介绍啥的,同时商品评价也在这里。

在这里插入图片描述

接下来重头戏,F12 打开 开发者工具,选择 Network,然后点击全部评价,抓取数据包。

请添加图片描述

将 url 打开,发现确实是评论数据。

在这里插入图片描述

单页爬取

那我们先写个小 demo 来尝试爬取这页的代码,看看有没有什么问题。


import requests
import pandas as pd

headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.54 Safari/537.36'
}

params = {
    'callback':'fetchJSON_comment98',
    'productId':'35152509650',
    'score':'0',
    'sortType':'6',
    'page': '5',
    'pageSize':'10',
    'isShadowSku':'0',
    'rid':'0',
    'fold':'1'
}

url = 'https://club.jd.com/comment/productPageComments.action?'
page_text = requests.get(url=url, headers=headers, params=params).text
page_text

在这里插入图片描述

数据处理

数据是获取了,但前面多了一些没用的字符(后面也有),很明显不能直接转成 json 格式,需要处理一下。


page_text = page_text[20: len(page_text) - 2]
data = json.loads(page_text)
data

在这里插入图片描述

现在数据格式处理好了,可以上手解析数据,提取我们所需要的部分。这里我们只提取 id(评论id)、color(产品颜色)、comment(评价)、time(评价时间)。


import pandas as pd

df = pd.DataFrame({'id': [],
                   'color': [],
                   'comment': [],
                   'time': []})
for info in data['comments']:
    df = df.append({'id': info['id'],
                    'color': info['productColor'],
                    'comment': info['content'],
                    'time': info['creationTime']},
                   ignore_index=True)
df

在这里插入图片描述

翻页操作

那么接下来就要寻找翻页的关键了,下面用同样的方法获取第二页、第三页的url,进行对比。

在这里插入图片描述

简单分析一下,page 字段是页数,翻页会用到,值得注意的是 sortType,字面意思是排序类型,猜测排序方式可能是:热度、时间等。经过测试发现 sortType=5 肯定不是按时间排序的,应该是热度,我们要获取按时间排序的,这样后期比较好处理,然后试了几个值,最后确定当 sortType=6 时是按评价时间排序。图中最后还有个 rid=0 ,不清楚什么作用,我爬取两个相同的url(一个加 rid 一个不加),测试结果是相同的,所以不用管它。

撸代码

先写爬取结果:开始想爬 10000 条评价,结果请求过多IP凉了,从IP池整了丶代理,也没顶住,拼死拼活整了1000条,时间不够,如果时间和IP充足,随便爬。经过测试发现这个IP封锁时间不会超过一天,第二天我跑了一下也有数据。下面看看主要的代码。

主调度函数

设置爬取的 url 列表,windows 环境下记得限制并发量,不然报错,将爬取的任务添加到 tasks 中,挂起任务。


async def main(loop):
    # 获取url列表
    page_list = list(range(0, 1000))
    # 限制并发量
    semaphore = asyncio.Semaphore(500)
    # 创建任务对象并添加到任务列表中
    tasks = [loop.create_task(get_page_text(page, semaphore)) for page in page_list]
    # 挂起任务列表
    await asyncio.wait(tasks)

页面抓取函数

抓取方法和上面讲述的基本一致,只不过换成 aiohttp 进行请求,对于SSL证书的验证也已设置。程序执行后直接进行解析保存。


async def get_page_text(page, semaphore):
    async with semaphore:
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.54 Safari/537.36'
        }
        params = {
            'callback': 'fetchJSON_comment98',
            'productId': '35152509650',
            'score': '0',
            'sortType': '6',
            'page': f'{page}',
            'pageSize': '10',
            'isShadowSku': '0',
            # 'rid': '0',
            'fold': '1'
        }
        url = 'https://club.jd.com/comment/productPageComments.action?'
        async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl=False), trust_env=True) as session:
            while True:
                try:
                    async with session.get(url=url, proxy='http://' + choice(proxy_list), headers=headers, params=params,
                                           timeout=4) as response:
                        # 遇到IO请求挂起当前任务,等IO操作完成执行之后的代码,当协程挂起时,事件循环可以去执行其他任务。
                        page_text = await response.text()
                        # 未成功获取数据时,更换ip继续请求
                        if response.status != 200:
                            continue
                        print(f"第{page}页爬取完成!")
                        break
                except Exception as e:
                    print(e)
                    # 捕获异常,继续请求
                    continue
        return parse_page_text(page_text)

解析保存函数

将 json 数据解析以追加的形式保存到 csv 中。


def parse_page_text(page_text):
    page_text = page_text[20: len(page_text) - 2]
    data = json.loads(page_text)

    df = pd.DataFrame({'id': [],
                       'color': [],
                       'comment': [],
                       'time': []})
    for info in data['comments']:
        df = df.append({'id': info['id'],
                        'color': info['productColor'],
                        'comment': info['content'],
                        'time': info['creationTime']},
                       ignore_index=True)

    header = False if Path.exists(Path('评价信息.csv')) else True
    df.to_csv('评价信息.csv', index=False, mode='a', header=header)
    print('已保存')

可视化

颜色分布

排名前三分别是灰粉色、黑色、裸感肤色,多的不说,自己体会哈。

在这里插入图片描述

评价词云图

可以看出评价的关键词大多是对上身感觉的一些描述,穿着舒服当然是第一位的~

在这里插入图片描述

完结撒花,该向女朋友汇报工作了~

别忘记收藏哦~

在这里插入图片描述

到此这篇关于Python实战爬虫之女友欲买文胸不知何色更美的文章就介绍到这了,更多相关Python 爬虫文胸内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯