文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

得物社区亿级ES数据搜索性能调优实践

2024-11-30 14:30

关注

下面是这个索引当前的监控情况。

本文介绍社区利用IndexSorting,将亿级文档搜索性能由最开始2000ms优化到50ms的过程。如果大家遇到相似的问题和场景,相信看完之后一定能够一行代码成吨收益。

2、探索过程

2.1 初步优化

最开始需求很简单,只需要取最新发布的动态分页展示。这时候实现也是简单粗暴,满足功能即可。查询语句如下:

GET /content-alias/_search
{
  "track_total_hits": true,
  "sort": [
    {
      "publish_time": {
        "order": "desc"
      }
    }
  ],
  "size": 10
}

由于首页加载时没加任何筛选条件,于是变成了从亿级内容库中找出最新发布的10条内容。

针对这个查询很容易发现问题出现在大结果集的排序,要解决问题,自然的想到了两条路径:

经过用户诉求和开发成本的权衡后,当时决定“先扛住,再优化”:在用户打开首页的时候,默认增加“发布时间在最近一周内”的筛选条件,这时语句变成了:

GET /content-alias/_search
{
  "track_total_hits": true,
  "query": {
    "bool": {
      "filter": [
        {
          "range": {
            "publish_time": {
              "gte": 1678550400,
              "lt": 1679155200
            }
          }
        }
      ]
    }
  },
  "sort": [
    {
      "publish_time": {
        "order": "desc"
      }
    }
  ],
  "size": 10
}

这个改动上线后,效果可以说是立竿见影,首页加载速度立马降到了200ms以内,平均RT60ms。这次改动也为我们减小了来自业务的压力,为后续的优化争取了不少调研的时间。

虽然搜索首页的加载速度明显快了,但是并没有实际解决根本问题——ES大结果集指定字段排序还是很慢。对业务来说,结果页上的一些边界功能的体验依旧不能尽如人意,比如导出、全量动态的搜索等等。这一点从监控上也能够较明显的看出:慢查询还是存在,并且还伴随着少量的接口超时。

老实说这个时期我们对于ES的了解还比较基础,只能说会用、知道分片、倒排索引、相关性打分,然后就没有了。总之我们有了方向,开始奋起直追。

2.2 细致打磨

2.2.1 知识积累

带着之前遗留的问题,我们开始开始重新出发,从头学习ES。要优化搜索性能,首先我们要知道的是搜索是怎么做的。下面我们就以一个最简单的搜索为例,拆解一下整个搜索请求的过程。

(1)搜索请求
GET /content-alias/_search
{
  "track_total_hits":false,
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category_id.keyword": "xxxxxxxx"
          }
        }
      ]
    }
  }, 
  "size": 10
}

精确查询category_id为"xxxxxxxx"的文档,取10条数据,不需要排序,不需要总数

总流程分3步:

  1. 客户端发起请求到Node1
  2. Node1作为协调节点,将请求转发到索引的每个主分片或副分片中,每个分片在本地执行查询。
  3. 每个节点返回各自的数据,协调节点汇总后返回给客户端

如图可以大致描绘这个过程:

我们知道ES是依赖Lucene提供的能力,真正的搜索发生在Lucene中,还需要继续了解Lucene中的搜索过程。

(2)Lucene

Lucene中包含了四种基本数据类型,分别是:

在介绍Lucene index的搜索过程之前,这里先说一下组成Lucene index的最小数据存储单元——Segment。

Lucene index由许许多多的Segment组成,每一个Segment里面包含着文档的Term字典、Term字典的倒排表、文档的列式存储DocValues以及正排索引。它能够独立的直接对外提供搜索功能,几乎是一个缩小版的Lucene index。

(3)Term字典和倒排表

上图是Term字典和其倒排表的大致样子

当然这里还有些重要数据结构,比如:

这里面的细节比较多,感兴趣的可以单独了解,这里不影响我们的整体搜索流程,不过多赘述。

有了Term字典和倒排表我们就能直接拿到搜索条件匹配的结果集了,接下来只需要通过docID去正排索引中取回整个doc然后返回就完事儿了。

这是ES的基本盘理论上不会慢,我们猜测慢查询发生在排序上。那给请求加一个排序会发生什么呢?比如:

GET /content-alias/_search
{
  "track_total_hits":false,
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category_id.keyword": "xxxxxxxx"
          }
        }
      ]
    }
  }, 
  "sort": [
    {
      "publish_time": {
        "order": "desc"
      }
    }
  ],
  "size": 10
}

通过倒排表拿到的docId是无序的,现在指定了排序字段,最简单直接的办法是全部取出来,然后排序取前10条。这样固然能实现效果,但是效率却是可想而知。那么Lucene是怎么解决的呢?

(4)DocValues

倒排索引能够解决从词到文档的快速映射,但需要对检索结果进行分类、排序、数学计算等聚合操作时需要文档号到值的快速映射。而正排索引又过于臃肿庞大,怎么办呢?

这时候各位大佬可能就直接想到了列式存储,没有错,Lucene就引入了基于docId的列式存储结构——DocValues

文档号

列值

列值映射

0

2023-01-13

2

1

2023-01-12

1

2

2023-03-13

3

比如上表中的DocValues=[2023-01-13, 2023-01-12,2023-03-13]

如果列值是字符串,Lucene会把原来的字符串值按照字典排序生成数字ID,这样的预处理能进一步加快排序速度。于是我们得到了DocValues=[2, 1, 3]

Docvalues的列式存储形式可以加快我们的遍历的速度。到这里一个常规的搜索取前N条记录的请求算是真正的拆解完成。这里不讨论词频、相关性打分、聚合等功能的分析,所以本文对整个过程和数据结构做了大幅简化。如果对这部分感兴趣,欢迎一起讨论。

此时排序慢的问题也逐渐浮出了水面:尽管Docvalues又是列式存储,又是将复杂值预处理为简单值避免了查询时的复杂比较,但是依旧架不住我们需要排序的数据集过大。

看起来ES尽力了,它好像确实不擅长解决我们这个场景的慢查询问题。

不过有灵性的各位读者肯定想到了,如果能把倒排表按照我们预先指定的顺序存储好,就能省下整个排序的时间。

2.2.2 IndexSorting

很快ES官方文档《How to tune for search speed》中提到了一个搜索优化手段——索引排序(Index Sorting)出现在了我们的视野中。

从文档上的描述我们可以知道,索引排序对于搜索性能的提升主要在两个方面:

  1. 对于多条件并列查询(a and b and ...),索引排序可以帮助我们把不符合条件的文档存在一起,跳过大量的不匹配的文档。但是此技巧仅适用于经常用于筛选的低基数字段。
  2. 提前中断:当搜索排序和索引排序指定的顺序一样时,只需要比较每个段的前 N 个文档,其他的文档仅需要用于总数计算。比如:我们的文档中有一个时间戳,而我们经常需要按照时间戳来搜索和排序,这时候如果指定的索引排序和搜索排序一致,通常能够极大的提高搜索排序的效率。

提前中断!!!简直是缺什么来什么,于是我们开始围绕这一点展开调研。

(1)开启索引排序
PUT /content
{
    "settings": {
        "index": {
            "sort.field": "publish_time", // 可指定多个字段
            "sort.order": "desc"
        }
    },
    "mappings": {
        "properties": {
            "content_id": {
                "type": "long"
            },
            "publish_time": {
                "type": "long"
            },
            ...
        }
    }
}

如上面的例子,文档在写入磁盘时会按照 publish_time 字段的递减序进行排序。

在前面的段落中我们反复提到了docID和正排索引。这里我们顺带简单介绍下他们的关系,首先Segment中的每个文档,都会被分配一个docID,docID从0开始,顺序分配。在没有IndexSorting时,docID是按照文档写入的顺序进行分配的,在设置了IndexSorting之后,docID的顺序就与IndexSorting的顺序一致。

下图描述了docID和正排索引的关系:

那么再次回头来看看我们最开始的查询:

GET /content-alias/_search
{
  "track_total_hits":true,
  "sort": [
    {
      "publish_time": {
        "order": "desc"
      }
    }
  ],
  "size": 10
}

在Lucene中进行查询时,发现结果集的倒排表顺序刚好是publish_time降序排序的,所以查询到前10条数据之后即可返回,这就做到了提前中断,省下了排序开销。那么代价是什么呢?

(2)代价

IndexSorting和查询时排序不一样,本质是在写入时对数据进行预处理。所以排序字段只能在创建时指定且不可更改。并且由于写入时要对数据进行排序,所以也会对写入性能也会有一定负面影响。

之前我们提到了Lucene本身对排序也有各种优化,所以如果搜索结果集本身没有那么多的数据,那么就算不开启这个功能,也能有不错的RT。

另外由于多数时候还是要计算总数,所以开启索引排序之后只能提前中断排序过程,还是要对结果集的总数进行count。如果能够不查总数,或者说通过另外的方式获取总数,那么能够更好的利用这个特性。

小结:

见:Elasticsearch Benchmarks

2.3 效果

由于我们的业务远远没有达到ES的写入瓶颈,而且也少有频繁变更排序字段的场景。在经过短暂的权衡之后,确定索引排序正是我们需要的,于是开始使用线上真实数据对索引排序的效果进行简单的性能测试。

(1)性能测试:首页

(2)性能测试:其他

这里开启索引排序后,随机几个常规条件和时间窗口的搜索组合测试

可以看到效果非常明显,没有以前的那种尖刺,RT也很稳定,于是我们决定正式上线这个功能。

(3)线上效果

慢查询

整体前后对比

和我们预期的基本一样,搜索RT大幅降低,慢查询完全消失。

2.4 后续优化

在探索过程中,其实还发现了一些其他的优化手段,鉴于开发成本和收益,有些我们并没有完全应用于生产环境。这里列出其中几点,希望能给大家一些启发。

3、写在最后

相信看到这里的大家都能看出,我们的优化中也没有涉及到十分高深的技术难点,我们只是在解决问题的过程中,逐步从小白转变成了一个初学者。来一个大牛也许从一开始就能直接绕过我们的弯路,不过万里之行始于足下,最后这里总结一点经验和感受分享给大家,希望能给与我们一样的初学者一些参考。

ES在大结果集指定字段排序的场景下性能不佳,我们使用时应该尽量避免出现这种场景。如果无法避免,合适的IndexSorting设置能大幅提升排序性能。

优化永无止境,权衡好成本和收益,集中资源解决最优先和重要的问题才是我们应该做的。


来源:得物技术内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯