本文转载自微信公众号「码工小熊」,作者小熊妹。转载本文请联系码工小熊公众号。
大家好,我是爱学习的小xiong熊妹。
今天继续跟大家分享:分层分析法。这个方法也非常简单实用,即可以弥补矩阵分析法的缺陷,又是用户分群,商品ABC分析的基础,很实用哦。
一、为什么要做分层
分层分析,是为了应对平均值失效的场景。
这就是典型的平均值失效。统计的时候,因为一个张老财,把人均数值搞得不可信了。而分层分析法处理这个问题的思路也很简单:
把张老财单独分一层“老财主”
把其他人单独分一层“穷光蛋”
“老财主”≥≥“穷光蛋”
搞掂啦!
这样下次统计的时候,就可以看:有多少“老财主”,有多少“穷光蛋”,两个收入阶层单独统计平均收入,作为打土豪的依据。这样就解决了平均值失效的问题。
二、分层如何做
明确分层对象和分层指标。
比如:
- 想区分用户消费力,分层对象就是:用户,分层指标就是:消费金额
- 想区分商品销售额,分层对象就是:商品,分层指标就是:销售金额
- 想区分门店营业额,分层对象就是:门店,分层指标就是:营业收入
这些要提前想好
查看数据,确认是否需要分层。
分层是应对平均值失效的情况的,所以如果如下图1,存在极值影响的情况,则适合分层。如果是如2,极值影响不大,则不适合
设定分层的层级。
这是最纠结的一步,很多时候会因为到底多高算“高”而吵起来。最好的解决办法是老板拍板,所有人都不用争不用吵了。
除此以外,还有一些简单有效的判断方法,比如著名的“二八原则”。以上述销售业绩分层为例,可以先从高到低排序,然后把累积业绩占80%的人选出来,作为“第1层级(优等)”,其他的归为“第2层级(次等)”(如下图)
但是从上图也能看出,这样分并不很合理,有一些业绩很低的业务员被归入了一级。这是因为,在这一个销售团队内,业绩差异实在太大了,因此简单的二八开并不能有效区分。
此时还可以用“二四六八十”法则,即计算个体与平均值的差异,然后:
- 比平均值高的,根据平均值的2倍、4倍、6倍、8倍、10倍,分层
- 比平均值低的,根据平均值的1/2、1/4分层
这样的分层,能有效区分远远高于平均值的个体,效果如下图
分完以后,分层就结束啦!多简单
三、如何利用分层分析?
分层的最大作用是帮我们看清楚:到底谁是主力,谁是吊车尾。从而指导业务,从人海战术向精兵简政思考。还拿上述的销售团队举例,如果发现A1号销售这么厉害,我们就不会想着:“人均业绩100,那想多做1000业绩,就得招10个人”,而是会去想:“怎么样再挖掘一个A1过来。”
此时,有几个常见的思考方向:
- 人员画像:A1是什么学历、多大年纪、多久从业经验。此时对应的做法是:找和A1有类似画像的人,应该他也能像A1一样好
- 人员行为:A1做了哪些事情?能取得这么好的业绩。此时对应的做法是:找到A1的关键行为,然后让其他人学A1
- 目标客户:A1服务了哪些客户?是不是这些客户本身更容易做?此时对应的做法是:让其他人多发展同行业的客户,然后再找新的销售,服务不容易做的客户
- 成长经历:A1是怎么从普通人里脱颖而出的,稳定不稳定?此时对应的做法是:如果A1是稳定成长的,则看这么培养其他人;如果A纯粹运气好,则采用大浪淘沙的战术,多搞新人进来,期望冒出头一个新A1
可见:分层分析是其他分析的前哨站,做好了分层,能引发更多思考和进一步分析。有很多讲数据分析的文章会提到分层分析,比如应用于商品的,叫ABC分类,应用于用户的,叫用户分层,应用于业务的,叫二八法则。本质都是一回事。
四、分层分析的不足之处
每种方法都不是万能的,分层分析的缺点,在于:只考虑一个分层指标。虽然简单,但是片面,不能全面说明问题。如果想采用二个指标,可以用矩阵分析法,如果想采用多个指标,可以用DEA模型。