torch.flatten(x)等于torch.flatten(x,0)默认将张量拉成一维的向量,也就是说从第一维开始平坦化,torch.flatten(x,1)代表从第二维开始平坦化。
import torch
x=torch.randn(2,4,2)
print(x)
z=torch.flatten(x)
print(z)
w=torch.flatten(x,1)
print(w)
输出为:
tensor([[[-0.9814, 0.8251],
[ 0.8197, -1.0426],
[-0.8185, -1.3367],
[-0.6293, 0.6714]],
[[-0.5973, -0.0944],
[ 0.3720, 0.0672],
[ 0.2681, 1.8025],
[-0.0606, 0.4855]]])
tensor([-0.9814, 0.8251, 0.8197, -1.0426, -0.8185, -1.3367, -0.6293, 0.6714,
-0.5973, -0.0944, 0.3720, 0.0672, 0.2681, 1.8025, -0.0606, 0.4855])
tensor([[-0.9814, 0.8251, 0.8197, -1.0426, -0.8185, -1.3367, -0.6293, 0.6714]
,
[-0.5973, -0.0944, 0.3720, 0.0672, 0.2681, 1.8025, -0.0606, 0.4855]
])
torch.flatten(x,0,1)代表在第一维和第二维之间平坦化
import torch
x=torch.randn(2,4,2)
print(x)
w=torch.flatten(x,0,1) #第一维长度2,第二维长度为4,平坦化后长度为2*4
print(w.shape)
print(w)
输出为:
tensor([[[-0.5523, -0.1132],
[-2.2659, -0.0316],
[ 0.1372, -0.8486],
[-0.3593, -0.2622]],
[[-0.9130, 1.0038],
[-0.3996, 0.4934],
[ 1.7269, 0.8215],
[ 0.1207, -0.9590]]])
torch.Size([8, 2])
tensor([[-0.5523, -0.1132],
[-2.2659, -0.0316],
[ 0.1372, -0.8486],
[-0.3593, -0.2622],
[-0.9130, 1.0038],
[-0.3996, 0.4934],
[ 1.7269, 0.8215],
[ 0.1207, -0.9590]])
对于torch.nn.Flatten(),因为其被用在神经网络中,输入为一批数据,第一维为batch,通常要把一个数据拉成一维,而不是将一批数据拉为一维。所以torch.nn.Flatten()默认从第二维开始平坦化。
import torch
#随机32个通道为1的5*5的图
x=torch.randn(32,1,5,5)
model=torch.nn.Sequential(
#输入通道为1,输出通道为6,3*3的卷积核,步长为1,padding=1
torch.nn.Conv2d(1,6,3,1,1),
torch.nn.Flatten()
)
output=model(x)
print(output.shape) # 6*(7-3+1)*(7-3+1)
输出为:
torch.Size([32, 150])
总结
到此这篇关于Pytorch中torch.flatten()和torch.nn.Flatten()的文章就介绍到这了,更多相关Pytorch torch.flatten()和torch.nn.Flatten()内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!