文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pytorch中torch.flatten()和torch.nn.Flatten()实例详解

2024-04-02 19:55

关注

 torch.flatten(x)等于torch.flatten(x,0)默认将张量拉成一维的向量,也就是说从第一维开始平坦化,torch.flatten(x,1)代表从第二维开始平坦化。

import torch
x=torch.randn(2,4,2)
print(x)
 
z=torch.flatten(x)
print(z)
 
w=torch.flatten(x,1)
print(w)
 
输出为:
tensor([[[-0.9814,  0.8251],
         [ 0.8197, -1.0426],
         [-0.8185, -1.3367],
         [-0.6293,  0.6714]],
 
        [[-0.5973, -0.0944],
         [ 0.3720,  0.0672],
         [ 0.2681,  1.8025],
         [-0.0606,  0.4855]]])
 
tensor([-0.9814,  0.8251,  0.8197, -1.0426, -0.8185, -1.3367, -0.6293,  0.6714,
        -0.5973, -0.0944,  0.3720,  0.0672,  0.2681,  1.8025, -0.0606,  0.4855])
 
 
tensor([[-0.9814,  0.8251,  0.8197, -1.0426, -0.8185, -1.3367, -0.6293,  0.6714]
,
        [-0.5973, -0.0944,  0.3720,  0.0672,  0.2681,  1.8025, -0.0606,  0.4855]
])

 torch.flatten(x,0,1)代表在第一维和第二维之间平坦化

import torch
x=torch.randn(2,4,2)
print(x)
 
w=torch.flatten(x,0,1) #第一维长度2,第二维长度为4,平坦化后长度为2*4
print(w.shape)
 
print(w)
 
输出为:
tensor([[[-0.5523, -0.1132],
         [-2.2659, -0.0316],
         [ 0.1372, -0.8486],
         [-0.3593, -0.2622]],
 
        [[-0.9130,  1.0038],
         [-0.3996,  0.4934],
         [ 1.7269,  0.8215],
         [ 0.1207, -0.9590]]])
 
torch.Size([8, 2])
 
tensor([[-0.5523, -0.1132],
        [-2.2659, -0.0316],
        [ 0.1372, -0.8486],
        [-0.3593, -0.2622],
        [-0.9130,  1.0038],
        [-0.3996,  0.4934],
        [ 1.7269,  0.8215],
        [ 0.1207, -0.9590]])

对于torch.nn.Flatten(),因为其被用在神经网络中,输入为一批数据,第一维为batch,通常要把一个数据拉成一维,而不是将一批数据拉为一维。所以torch.nn.Flatten()默认从第二维开始平坦化。

import torch
#随机32个通道为1的5*5的图
x=torch.randn(32,1,5,5)
 
model=torch.nn.Sequential(
    #输入通道为1,输出通道为6,3*3的卷积核,步长为1,padding=1
    torch.nn.Conv2d(1,6,3,1,1),
    torch.nn.Flatten()
)
output=model(x)
print(output.shape)  # 6*(7-3+1)*(7-3+1)
 
输出为:
 
torch.Size([32, 150])

总结

到此这篇关于Pytorch中torch.flatten()和torch.nn.Flatten()的文章就介绍到这了,更多相关Pytorch torch.flatten()和torch.nn.Flatten()内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯