一、媒体管道
1.1、媒体管道的特性
媒体管道实现了以下特性:
- 避免重新下载最近下载的媒体
- 指定存储位置(文件系统目录,Amazon S3 bucket,谷歌云存储bucket)
图像管道具有一些额外的图像处理功能:
- 将所有下载的图片转换为通用格式(JPG)和模式(RGB)
- 生成缩略图
- 检查图像的宽度/高度,进行最小尺寸过滤
1.2、媒体管道的设置
ITEM_PIPELINES = {'scrapy.pipelines.images.ImagesPipeline': 120} 启用
FILES_STORE = '/path/to/valid/dir' 文件管道存放位置
IMAGES_STORE = '/path/to/valid/dir' 图片管道存放位置
FILES_URLS_FIELD = 'field_name_for_your_files_urls' 自定义文件url字段
FILES_RESULT_FIELD = 'field_name_for_your_processed_files' 自定义结果字段
IMAGES_URLS_FIELD = 'field_name_for_your_images_urls' 自定义图片url字段
IMAGES_RESULT_FIELD = 'field_name_for_your_processed_images' 结果字段
FILES_EXPIRES = 90 文件过期时间 默认90天
IMAGES_EXPIRES = 90 图片过期时间 默认90天
IMAGES_THUMBS = {'small': (50, 50), 'big':(270, 270)} 缩略图尺寸
IMAGES_MIN_HEIGHT = 110 过滤最小高度
IMAGES_MIN_WIDTH = 110 过滤最小宽度
MEDIA_ALLOW_REDIRECTS = True 是否重定向
二、ImagesPipeline类简介
#解析settings里的配置字段
def __init__(self, store_uri, download_func=None, settings=None)
#图片下载
def image_downloaded(self, response, request, info)
#图片获取 图片大小的过滤 #缩略图的生成
def get_images(self, response, request, info)
#转化图片格式
def convert_image(self, image, size=None)
#生成媒体请求 可重写
def get_media_requests(self, item, info)
return [Request(x) for x in item.get(self.images_urls_field, [])] #得到图片url 变成请求 发给引擎
#此方法获取文件名 进行改写
def item_completed(self, results, item, info)
#文件路径
def file_path(self, request, response=None, info=None)
#缩略图的存储路径
def thumb_path(self, request, thumb_id, response=None, info=None):
三、小案例:使用图片管道爬取百度图片
(当然不使用图片管道的话也是可以爬取百度图片的,但这还需要我们去分析网页的代码,还是有点麻烦,使用图片管道就可以省去这个步骤了)
3.1、spider文件
注意:由于需要添加所有的请求头,所以我们要重写start_requests函数
import re
import scrapy
from ..items import DbimgItem
class DbSpider(scrapy.Spider):
name = 'db'
# allowed_domains = ['xxx.com']
start_urls = ['https://image.baidu.com/search/index?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=index&fr=&hs=0&xthttps=111110&sf=1&fmq=&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=%E7%8B%97&oq=%E7%8B%97&rsp=-1']
def start_requests(self): #因为需要添加所有的请求头,所以我们要重写start_requests函数
# url = 'https://image.baidu.com/search/index?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=index&fr=&hs=0&xthttps=111110&sf=1&fmq=&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=%E7%8B%97&oq=%E7%8B%97&rsp=-1'
headers = {
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",
"Accept-Encoding": "gzip, deflate, br",
"Accept-Language": "zh-CN,zh;q=0.9",
"Cache-Control": "max-age=0",
"Connection": "keep-alive",
"Cookie": "BIDUPSID=4B61D634D704A324E3C7E274BF11F280; PSTM=1624157516; BAIDUID=4B61D634D704A324C7EA5BA47BA5886E:FG=1; __yjs_duid=1_f7116f04cddf75093b9236654a2d70931624173362209; BAIDUID_BFESS=101022AEE931E08A9B9A3BA623709CFE:FG=1; BDORZ=B490B5EBF6F3CD402E515D22BCDA1598; BDRCVFR[dG2JNJb_ajR]=mk3SLVN4HKm; cleanHistoryStatus=0; H_PS_PSSID=34099_33969_34222_31660_34226_33848_34113_34073_33607_34107_34134_34118_26350_22159; delPer=0; PSINO=6; BA_HECTOR=24ak842ka421210koq1gdtj070r; BDRCVFR[X_XKQks0S63]=mk3SLVN4HKm; userFrom=www.baidu.com; firstShowTip=1; indexPageSugList=%5B%22%E7%8B%97%22%2C%22%E7%8C%AB%E5%92%AA%22%2C%22%E5%B0%8F%E9%80%8F%E6%98%8E%22%5D; ab_sr=1.0.1_OGYwMTZiMjg5ZTNiYmUxODIxOTgyYTllZGMyMzhjODE2ZWE5OGY4YmEyZWVjOGZhOWIxM2NlM2FhZTQxMmFjODY0OWZiNzQxMjVlMWIyODVlZWFiZjY2NTQyMTZhY2NjNTM5NDNmYTFmZjgxMTlkOGYxYTUzYTIzMzA0NDE3MGNmZDhkYTBkZmJiMmJhZmFkZDNmZTM1ZmI2MWZkNzYyYQ==",
"Host": "image.baidu.com",
"Referer": "https://image.baidu.com/",
"sec-ch-ua": '" Not;A Brand";v="99", "Google Chrome";v="91", "Chromium";v="91"',
"sec-ch-ua-mobile": "?0",
"Sec-Fetch-Dest": "document",
"Sec-Fetch-Mode": "navigate",
"Sec-Fetch-Site": "same-origin",
"Sec-Fetch-User": "?1",
"Upgrade-Insecure-Requests": "1",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36"
}
for url in self.start_urls:
yield scrapy.Request(url,headers=headers,callback=self.parse,dont_filter=True)
def parse(self, response):
img_urls = re.findall('"thumbURL":"(.*?)"', response.text)
# print(img_urls)
item = DbimgItem()
item['image_urls'] = img_urls
yield item
3.2、items文件
import scrapy
class DbimgItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
image_urls = scrapy.Field()
3.3、settings文件
ROBOTSTXT_OBEY = False
#打开我们写的管道
ITEM_PIPELINES = {
# 'dbimg.pipelines.DbimgPipeline': 300,
'dbimg.pipelines.ImgPipe': 300,
}
#图片存放位置
IMAGES_STORE = 'D:/python test/爬虫/scrapy6/dbimg/imgs'
3.4、pipelines文件
import os
from itemadapter import ItemAdapter
from scrapy.pipelines.images import ImagesPipeline
import settings
"""
def item_completed(self, results, item, info):
with suppress(KeyError):
ItemAdapter(item)[self.images_result_field] = [x for ok, x in results if ok]
return item
"""
class ImgPipe(ImagesPipeline):
num=0
#重写此函数修改获取的图片的名字 不然图片名称就是一串数字字母
def item_completed(self, results, item, info):
images_path = [x['path'] for ok, x in results if ok]
#print('results: ',results) 先查看下results的数据格式,然后才能获取到我们需要的值
for image_path in images_path:
os.rename(settings.IMAGES_STORE + "/" + image_path, settings.IMAGES_STORE + "/" + str(self.num) + ".jpg")
self.num += 1
结果:
以上就是python爬虫Scrapy框架:媒体管道原理学习分析的详细内容,更多关于python爬虫Scrapy框架的资料请关注编程网其它相关文章!