这篇文章给大家介绍IDEA WordCount jar包上传spark是怎么调试及排错的,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
Based on:
Mac os
Spark 2.4.3
(Spark running on a standalone mode reference blog :http://blog.itpub.net/69908925/viewspace-2644303/ )
scala 2.12.8
IDEA 2019
1 IDEA-File-Project Structure-Libarary-Scala SDK
select version 2.11.12
这处选择的版本需要跟spark scala运行版本一致,默认的是本机装的Scala版本2.12.8,spark上运行会报主类错误
2 新建project ,pom.xml添加依赖
<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.ny.service</groupId> <artifactId>scala517</artifactId> <version>1.0</version> <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --> <dependencies> <!-- https://mvnrepository.com/artifact/org.scala-lang/scala-library --> <!-- 以下dependency都要修改成自己的scala,spark,hadoop版本--> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.11.12</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.4.3</version> </dependency> </dependencies> <build> <!--程序主目录,按照自己的路径修改,如果有测试文件还要加一个testDirectory--> <sourceDirectory>src/main/scala</sourceDirectory> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <version>2.15.2</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>2.4.3</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <filters> <filter> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes> </filter> </filters> <!--<transformers>--> <!--<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">--> <!--<mainClass></mainClass>--> <!--</transformer>--> <!--</transformers>--> </configuration> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.8</source> <target>1.8</target> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-jar-plugin</artifactId> <configuration> <archive> <manifest> <addClasspath>true</addClasspath> <useUniqueVersions>false</useUniqueVersions> <classpathPrefix>lib/</classpathPrefix> <!--修改为自己的包名.类名,右键类->copy reference--> <mainClass>com.ny.service.WordCount</mainClass> </manifest> </archive> </configuration> </plugin> </plugins> </build></project>
scala library 选择spark中的Scala版本 2.11.12 也是目前支持的最近版本
org.apache.spark 也选择2.11
否则会出现主类错误:
19/05/16 10:52:03 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:60010 (size: 22.9 KB, free: 366.3 MB)
19/05/16 10:52:03 INFO SparkContext: Created broadcast 0 from textFile at WordCount.scala:18
Exception in thread "main" java.lang.BootstrapMethodError: java.lang.NoClassDefFoundError: scala/runtime/java8/JFunction2$mcIII$sp
at com.nyc.WordCount$.main(WordCount.scala:24)
at com.nyc.WordCount.main(WordCount.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
如何查看spark 中Scala版本号
进入路径:
/usr/local/opt/spark-2.4.3/jars
3 word count测试脚本
package com.ny.serviceimport org.apache.spark.{SparkConf, SparkContext}object WordCount{ def main(args: Array[String]): Unit = { // 1 创建配置信息 val conf = new SparkConf().setAppName("wc") // 2 创建spark context sc val sc = new SparkContext(conf) // 3 处理逻辑 //读取文件 val lines = sc.textFile(args(0)) //压平 val words = lines.flatMap(_.split(" ")) //map val k2v = words.map((_,1)) val results = k2v.reduceByKey(_+_) //保存数据 results.saveAsTextFile(args(1)) // 4 关闭连接 sc.stop() }}
4 打包
复制到spark家目录下,因为standalone模式所以没有启动Hadoop集群
nancylulululu:spark-2.4.3 nancy$ mv /Users/nancy/IdeaProjects/scala517/target/original-scala517-1.0.jar wc.jar
5 spark submit 执行
bin/spark-submit \--class com.ny.service.WordCount \--master spark://localhost:7077 \./wc.jar \file:///usr/local/opt/spark-2.4.3/test/1test \file:///usr/local/opt/spark-2.4.3/test/out
如果是Hadoop file改为hdfs文件系统路径
查看执行结果文件:
nancylulululu:out nancy$ ls_SUCCESSpart-00000part-00001nancylulululu:out nancy$ cat part-00000(scala,2)(hive,1)(mysql,1)(hello,5)(java,2)
关于IDEA WordCount jar包上传spark是怎么调试及排错的就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。