在根据业务需求建立好数据故事线之后,就需要回归到数据分析之中了。如果属于在零售数据挖掘方面还处于空白的零售企业,其还需要打通不同设备、不同渠道、不同系统消费者标识信息,建立客户统一ID为核心ID,形成统一客户档案,对统一后的客户档案进行丰富增值,借助条件分析、算法挖掘等形成丰富的客户标签体系。
之后,零售企业可以将这些数据通过Data Analytics 数据分析平台进行自动化的分析,Data Analytics采用探索式分析模式,无需进行复杂的数据建模,系统就可以根据现有的业务数据特点,智能推荐可视化呈现方式,同时,用户还可以通过动态关联分析、全维度数据钻取、协同过滤等方式,使得业务人员或决策者可以自由地进行深度探索和分析。
在上述两个步骤完成之后,零售企业就可以着手搭建整体数据态势可视化系统了,以完成“整个故事的讲述”。这一环节并不涉及到数据底层的操作,技术门槛也不高,也常常被企业忽视,但是对于用户更好地理解、阅读数据,无疑有着重要的意义。要完成这个目标,更需要从数据可视化的角度进行设计,以不同样式、风格的图表来对数据进行展现,满足数据易读易懂、实时更新、重点数据突出、结构明晰、业务连接紧密等要求。
这个工作看起来很简单,但实际上却依赖于丰富的数据可视化经验以及行业洞察。考虑到大部分零售企业缺乏数据可视化的设计能力,其可以通过 Data MAX 数据大屏展示工具来便捷地完成可视化系统的搭建。Data MAX 为零售业数据展现提供了相应模板,并具有丰富的可视化设计组件,包括常用的数据图表、图形、控件以及具有3D效果的地图组件等,通过拖拽操作即可进行布局,能够显著加快可视化系统的构建。
这个态势可视化系统不仅可以通过大屏幕来展现,同样也可以通过移动端与Web来展现,这样就方便了随时随地的数据感知,为基于数据的零售业务拓展奠定坚实的基础。