文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

基于Matlab实现野狗优化算法的示例代码

2024-04-02 19:55

关注

1.概述

野狗优化算法(Dingo Optimization Algorithm, DOA)模仿澳大利亚野狗的社交行为。DOA算法的灵感来源于野狗的狩猎策略,即迫害攻击、分组策略和食腐行为。为了提高该方法的整体效率和性能,在DOA中制定了三种与四条规则相关联的搜索策略,这些策略和规则在搜索空间的强化(开发)和多样化(探索)之间提供了一种精确的平衡。

该算法的优点:寻优能力强,收敛速度快等特点。

2.捕食过程的数学模型

2.1 种群初始化

野狗种群在搜索边界内随机初始化:

其中,lbi和ubi分别表示个体的上下边界,randi是[0,1]之间的随机数。

2.2 群体攻击过程

捕食者通常使用高度智能的狩猎技术,野狗通常单独捕食小猎物,如兔子,但当捕食大猎物,如袋鼠时,它们会成群结队。野狗能找到猎物的位置并将其包围,其行为如上所示:

其中,t代表当前的迭代次数,是野狗新位置; na是在[2,SizePop/2]的逆序中生成的随机整数,其中SizePop是野狗种群的规模; 是将攻击的野狗的子集,其中是随机生成的野狗种群;是当前野狗的位置是上一次迭代中发现的最佳野狗;β1是在[-2.2]内均匀生成的随机数,它是一个比例因子,可改变野狗轨迹的大小。

2.3 迫害攻击过程

野狗通常捕猎小猎物,直到单独捕获为止。行为模拟为:

其中,是野狗新位置,是上一次迭代中发现的最佳野狗,β2的值与式2.2中的值相同,β2是在[-1,1]区间内均匀生成的随机数,r1是在从1到最大搜索代理(野狗)大小的区间内生成的随机数,是随机选择的第r1个野狗,其中i≠r1。

2.4 野狗的存活率

在DOA中,野狗的存活率值由下式给出:

其中,fitnessmax和fitnessmin分别是当前一代中最差和最佳的适应度值,而fitness(i)是第i个野狗的当前适应度值。式(5)中的生存向量包含[0,1]区间内的归一化适应度。

3.Matlab代码实现

3.1 代码

%====欢迎关注公众号:电力系统与算法之美====
 
function DOA()
 
%% ====参数设置====
 
popsize=20;    % 种群规模
Iteration=1000;     % 迭代次数
lb = -10;     % 各维度的下限
ub = 10;  % 各维度的上限
dim = 2;  % 优化变量的个数
 
P= 0.5;  % Hunting or Scavenger  rate. 
Q= 0.7;  % Group attack or persecution?
beta1= -2 + 4* rand();  % -2 < beta < 2     
beta2= -1 + 2* rand();  % -1 < beta2 < 1    
naIni= 2; % minimum number of dingoes that will attack
naEnd= popsize /naIni; % maximum number of dingoes that will attack
na= round(naIni + (naEnd-naIni) * rand()); % number of dingoes that will attack
 
%% ====初始化种群位置=====
Positions=lb + (ub - lb).*rand(popsize, dim);
for i=1:size(Positions,1)
    Fitness(i)=sum(Positions(i,:).^2); % get fitness
end
[best_score, minIdx]= min(Fitness);  % the min fitness value vMin and the position minIdx
best_x= Positions(minIdx,:);  % the best vector
[worst_score, ~]= max(Fitness); % the max fitness value vMax and the position maxIdx
curve=zeros(1,Iteration);
 
%% Section 2.2.4 Dingoes'survival rates
 
for i=1:size(Fitness,2)
    survival(i)= (worst_score-Fitness(i))/(worst_score - best_score);
end
 
 
%% =====开始循环===========
for t=1:Iteration
    for r=1:popsize
        if rand() < P  % Hunting
            sumatory=0;
 
            c=1;
            vAttack=[];
            while(c<=na)
                idx =round( 1+ (popsize-1) * rand());
 
                band= 0;
                for i=1:size(vAttack, 2)
                    if idx== vAttack(i)
                        band=1;
                        break;
                    end
 
                end
 
                if ~band
                    vAttack(c) = idx;
                    c=c+1;
                end
            end
 
            for j=1:size(vAttack,2)
                sumatory= sumatory + Positions(vAttack(j),:)- Positions(r,:);
            end
            sumatory=sumatory/na;
 
            if rand() < Q  % group attack
                v(r,:)=  beta1 * sumatory-best_x; % Strategy 1: Eq.2
            else  %  Persecution
                r1= round(1+ (popsize-1)* rand()); %
                v(r,:)= best_x + beta1*(exp(beta2))*((Positions(r1,:)-Positions(r,:))); % 
            end
        else % Scavenger
            r1= round(1+ (popsize-1)* rand());
            if rand() < 0.5
                val= 0;
            else
                val=1;
            end
 
            v(r,:)=   (exp(beta2)* Positions(r1,:)-((-1)^val)*Positions(r,:))/2; % 
        end
        if survival(r) <= 0.3  % Section 2.2.4, Algorithm 3 - Survival procedure
            band=1;
            while band
                r1= round(1+ (popsize-1)* rand());
                r2= round(1+ (popsize-1)* rand());
                if r1 ~= r2
                    band=0;
                end
            end
            if rand() < 0.5
                val= 0;
            else
                val=1;
            end
            v(r,:)=   best_x + (Positions(r1,:)-((-1)^val)*Positions(r2,:))/2;  % Section 2.2.4, Strategy 4: Eq.6
        end
        % Return back the search agents that go beyond the boundaries of the search space .
        Flag4ub=v(r,:)>ub;
        Flag4lb=v(r,:)<lb;
        v(r,:)=(v(r,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        % Evaluate new solutions
        Fnew= sum(v(r,:).^2);
        % Update if the solution improves
        if Fnew <= Fitness(r)
            Positions(r,:)= v(r,:);
            Fitness(r)= Fnew;
        end
        if Fnew <= best_score
            best_x= v(r,:);
            best_score= Fnew;
        end
    end
    curve(t)= best_score;
    [worst_score, ~]= max(Fitness);
    for i=1:size(Fitness,2)
        survival(i)= (worst_score-Fitness(i))/(worst_score - best_score);
    end
 
end
 
 
%======结束优化===============
 
%% 进化曲线
figure
semilogy(curve,'Color','r','LineWidth',2)
grid on
title('收敛曲线')
xlabel('迭代次数');
ylabel('最佳适应度');
axis tight
legend('DOA')
 
 
display(['最优解: ', num2str(best_x)]);
display(['最小值: ', num2str(best_score)]);
 
end

3.2 结果

到此这篇关于基于Matlab实现野狗优化算法的示例代码的文章就介绍到这了,更多相关Matlab野狗优化算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯