文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python numpy视图与副本

2024-04-02 19:55

关注

前言:

继上一篇对numpy 模块之ndarray一文中对 ndarray 内存结构主要分为两部分:

metdata :存放数组类型dtype、数组维度ndim、维度数量shape、维间距strides等
raw bata:存放原始数据data

metdata 中包含着关于数组相关信息,可以帮助我们在数组ndarray中快速索引和解释指定的数据

除此了对数组进行索引操作外,也会对数组的原数据进行类似与之前“拷贝”操作。

众所周知,在 Python 中大家应该对深浅拷贝有一定的印象吧,在 numpy 中则换成了“视图”与“副本”的概念了。

相信大家和我一样对此存在疑问,十万个为什么涌上心头了,“视图是什么?”,“什么是副本?”

因此,本期我们一起来学习 numpy 模块中比较新奇的概念视图与副本,Let's go~

1. 简单讲解

我们之前在学习 Python 赋值、深浅拷贝时,在代码添加中对比两个对象的地址id()是否一致。

同理,按照这样的思路,numpy 中也可以对比两个数组地址是否一样。

同时,在 numpy 数组对象ndarray 也提供许多字段,方便让我们进一步地查看数组内部的差异

ndarray.flags : 查看数组存储策略、读写权限、对象等

注:flags 相关属性名称可以单独调用例如 flags.writeable

介绍完上述指标,我们来小试一下:

>>> import numpy as np
>>> a = np.array([1,2,3,4])
>>> print(a[1:3])
[2 3]
>>> print(a[[1,2]])
[2 3]
>>>

查看a[1:3] 与 a[[1,2]] 内存地址,它们俩位置不一样,a[[1,2]]意味发生了深拷贝本(副本),a[1:3] 是原数组a引用(视图)

>>> print(id(a[1:3]))
2247482965008
>>> print(id(a[[1,2]]))
2247482964928

查看ndarray.owndata 属性,发现a[1:3] 数据来自a数组的,而a[[1,2]]是自身数据的

>>> print(a.flags.owndata)
True
>>> print(a[1:3].flags.owndata)
False
>>> print(a[[1,2]].flags.owndata)
True

我们在看一下 ndarray.base 属性,果真印证了使用flags.owndata 查询的结果,a[1:3] 不是数据所有者,而数据来源数组a;

a[[1,2]] 是数据所有者,数据来源本身(None)

>>> print(a[[1,2]].base)
None
>>> print(a[1:3].base)
[1 2 3 4]

2. 视图

视图概念

我们通过上述简单例子,可以知道 a[1:3] 不是数据所有者,数据来源于对数组a的引用(浅拷贝)。

因此,我们应该对视图有了基本的认识了,看一下官方怎么描述视图的

No copy at All。 Simple assignments make no copy of objects or their data.

视图,是对原数组进行引用拷贝,共享原始数组的数据。

视图应用

视图在numpy中广泛使用,视图一般产生有两种场景:

>>> import numpy as np
>>> a = np.array([1,2,3,4])
>>> b = a
>>> b is a
True
>>> id(a)
2247207679680
>>> id(b)
2247207679680
>>>

我们可以看到 a 与 b 是 同享同一个数据空间的

numpy 模块诸如索引、切片、函数view(),reshape()等返回视图结果

>>> arr = np.arange(10)
>>> arr_view = arr.view()
>>> arr.shape = (2,5)
>>> arr_reshape = arr.reshape(5,2)
# ndarray.base 属性
>>> print(arr.base)
None
>>> print(arr_view.base)
[[0 1 2 3 4]
 [5 6 7 8 9]]
>>> print(arr_reshape.base)
[[0 1 2 3 4]
 [5 6 7 8 9]]
# ndarray.flags.owndata 属性
>>> print(arr.flags.owndata)
True
>>> print(arr_view.flags.owndata)
False
>>> print(arr_reshape.flags.owndata)
False
>>>

视图优点

在 numpy 中 视图可以创建的对象可以节省内存空间,并且无需复制,提高查询速度

在视图中,创建的对象如果修改数据,原始数据也被修改。

3. 副本

副本概念

副本是对原数组进行完整拷贝(数据地址也会拷贝新的),与原始数组完全独立,相对于“深拷本”,不与原始数组共享数据。

同样截取官网,对副本的描述:

Deep Copy The copy method makes a complete copy of the array and its data

当改变副本的数据元素值时,虽然改变了副本与原数组相互独立,原始数组中元素值不会发生改变。

副本应用

副本的实现我们可以直接使用 ndarray.copy()方法对原数组进行深拷贝

b = np.array([2,5,7])

c = b.copy()

c[1] = 8

print("b:",b)
print("c:",c)

print("c is b:",c is b)

# 查看 ndarray.base 属性å
print("b.base:",b.base)
print("c.base:",c.base)

# 查看 ndarray.flags.owndata
print("b.flags.owndata:",b.flags.owndata)
print("c.flags.owndata:",c.flags.owndata)

image.png

image.png

总结:

本期,我们对 numpy 模块中重要的概念视图和副本。

我们可以通过内存地址id()方法,同时借助ndarray.base、ndarray.flags来进一步分析区别

到此这篇关于Python numpy视图与副本的文章就介绍到这了,更多相关Python numpy视图与副本内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯