文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

怎么在python中利用递归实现一个爬虫解析器

2023-06-14 13:42

关注

怎么在python中利用递归实现一个爬虫解析器?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

怎么在python中利用递归实现一个爬虫解析器

另外一种是配置文件预先告知的方式,你配置成什么类型,解析器就通过对应的解析规则去解析。

统一网页形式,需要做大量的网页内容形式转换,而配置文件预先告知则需要在配置时指定更多解析字段。相比较而言,通过第二种方式,未来改变较多的是配置规则,不需要动核心代码,引入 bug 的可能性较低。因此这里我们采用第二种方式实现解析器

进一步分析

解析器对于网页内容的提取,本质上和我们在本地电脑上查找和整理文件,没有什么差别。比如像下面这样

怎么在python中利用递归实现一个爬虫解析器

解析内容就是从中提取我们想要的信息,然后整理成我们希望的格式。比如上面的内容,我们提取出来的形式应该是这样

{  "design": "设计图.psd",  "software": "sketch.dmg"}

而在实际的爬虫开发过程中,网页形式远比以上的复杂。其实遇到最多的问题是在一组列表中嵌套一个列表,我们需要把这种形式提取出来。比如像下面这种形式

{    "a": "a",    "b": [        {"c": "c1", "d": "d1"},        {"c": "c2", "d": "d2"}]}

他提取出信息后应该是这样

[  {    "a": "a",    "c": "c1",    "d": "d1"  },  {    "a": "a",    "c": "c2",    "d": "d2"  }]

如果小伙伴对于算法熟悉的话,应该能察觉出这种遍历用递归来写是非常方便的。但要注意的是 python 会限定递归的层数,小伙伴可以通过下面这个方法查看递归限定的层数

import sysprint(sys.getrecursionlimit())>>>1000

我这边限定的层数是 1k。对于解析网页来说完全够用了,如果哪个人把网页解析逻辑嵌套了 1000 层,我建议你直接跟老板提放弃这个网页吧!

再进一步分析

我们已经知道对于通用解析来说,就是通过配置解析规则提取页面的对应信息。而针对有列表层级的网页可能还涉及递归遍历问题。那如何去配置这种解析规则呢?其实很简单,只需要在进入每一个层级之前先指定该层的数据形式,比如下面这个原数据

{  "a": "a",  "b": [          {"c": "c1", "d": "d1"},          {"c": "c2", "d" : "d2"}       ]}

想提取嵌套信息,我们的解析规则就应该是这样的

[ {  "$name": "a",  "$value_type": "raw",  "$parse_method": "json",  "$parse_rule": "a",  "$each": [] }, {  "$name": "__datas__",  "$value_type": "recursion",  "$parse_method": "json",  "$parse_rule": "b",  "$each": [        {           "$name": "c",          "$value_type": "raw",         "$parse_method": "json",         "$parse_rule": "c",         "$each": []        },        {           "$name": "d",          "$value_type": "raw",         "$parse_method": "json",         "$parse_rule": "d",         "$each": []        }      ] }]

其中 $name 字段表示我们最终希望最外层数据所拥有的字段名,当然如果是需要递归到内层的字段,则将列表保存为 __datas__ ,然后根据这个 __datas__ 进行内层结构的解析。最终我们得到的数据结构应该是这样的

[  {"a": "a", "c": "c1", "d": "d1"},   {"a": "a", "c": "c2", "d": "d2"}]

以上我们只演示了 json 的解析规则,如果要拿来解析 html 对象呢?很简单,将解析方式改为 xpath 对象,然后传入 xpath 解析语法即可。

代码实现

总共分成两部分,一部分根据原最终结果和规则进行打包,将所有涉及 recursion 逻辑的字段进行转换,代码如下

def _pack_json(result, rules):        item = {}        for p_rule in rules:            if p_rule.get("$value_type") == "raw":                if p_rule.get("$parse_method") == "json":                    item[p_rule.get("$name")] = glom(result, p_rule.get("$parse_rule"))            elif p_rule.get("$value_type") == "recursion":                if p_rule.get("$parse_method") == "json":                    tmp_result = glom(result, p_rule.get("$parse_rule"))                    total_result = []                    for per_r in tmp_result:                        total_result.append(_pack_json(per_r, p_rule.get("$each")))                    item[p_rule.get("$name")] = total_result        return item

另外一部分将上一步得到的进行解析,将打包得到的结果进行解包,即将所有内嵌的数据提到最外层,代码如下

def _unpack_datas(result: dict) -> list:        if "__datas__" not in result:            return [result]        item_results = []        all_item = result.pop("__datas__")        for per_item in all_item:            if "__datas__" in per_item:                tmp_datas = per_item.pop("__datas__")                for per_tmp_data in tmp_datas:                    tmp_item = _unpack_datas(per_tmp_data)                    for per_tmp_item in tmp_item:                        item_results.append({**per_tmp_item, **per_item})            else:                item_results.append({**result, **per_item})        return item_results

后再包一层执行入口就可以了,完整代码如下

from loguru import loggerfrom glom import glomdef parse(result, rules):    def _pack_json(result, rules):        item = {}        for p_rule in rules:            if p_rule.get("$value_type") == "raw":                if p_rule.get("$parse_method") == "json":                    item[p_rule.get("$name")] = glom(result, p_rule.get("$parse_rule"))            elif p_rule.get("$value_type") == "recursion":                if p_rule.get("$parse_method") == "json":                    tmp_result = glom(result, p_rule.get("$parse_rule"))                    total_result = []                    for per_r in tmp_result:                        total_result.append(_pack_json(per_r, p_rule.get("$each")))                    item[p_rule.get("$name")] = total_result        return item    def _unpack_datas(result: dict) -> list:        if "__datas__" not in result:            return [result]        item_results = []        all_item = result.pop("__datas__")        for per_item in all_item:            if "__datas__" in per_item:                tmp_datas = per_item.pop("__datas__")                for per_tmp_data in tmp_datas:                    tmp_item = _unpack_datas(per_tmp_data)                    for per_tmp_item in tmp_item:                        item_results.append({**per_tmp_item, **per_item})            else:                item_results.append({**result, **per_item})        return item_results    pack_result = _pack_json(result, rules)    logger.info(pack_result)    return _unpack_datas(pack_result)

看完上述内容,你们掌握怎么在python中利用递归实现一个爬虫解析器的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注编程网行业资讯频道,感谢各位的阅读!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯