这期内容当中小编将会给大家带来有关怎么在Python中使用pandas合并数据,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
Python主要用来做什么
Python主要应用于:1、Web开发;2、数据科学研究;3、网络爬虫;4、嵌入式应用开发;5、游戏开发;6、桌面应用开发。
一、concat
concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False)
axis: 需要合并链接的轴,0是行,1是列join:连接的方式 inner,或者outer
二、相同字段的表首尾相接
#现将表构成list,然后在作为concat的输入In [4]: frames = [df1, df2, df3] In [5]: result = pd.concat(frames)
要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数
In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])
也可以通过传入字典来增加分组键
pieces = {'x': df1, 'y': df2, 'z': df3}result = pd.concat(pieces)
三、axis
当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并,是以索引号进行连接的
result = pd.concat([df1, df4], axis=1)
3.1 join
加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。
result = pd.concat([df1, df4], axis=1, join='inner')
3.2 join_axes
如果有join_axes的参数传入,可以指定根据那个轴来对齐数据
例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接
result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])
四、append
append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)
result = df1.append(df2)
五、无视index的concat
如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。
上述就是小编为大家分享的怎么在Python中使用pandas合并数据了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注编程网行业资讯频道。