文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python+OpenCV实现图像基本操作的示例详解

2023-05-16 15:18

关注

1. 计算机眼中的图像

计算机眼中的图像由一个个像素组成, 每个像素点的值在0-255之间,代表像素点的亮度(0为最暗,255为最亮)。

灰度图(黑白图)为单通道。

彩色图为三通道。彩色图像包括三个颜色通道——B,G,R,分别表示蓝、绿、红。

2. 图像的表示

图像的高和宽分别代表图像在竖直和水平方向分别有多少个像素点。也等价于每个颜色通道矩阵的维度:

彩色图像为三维数组,分别为行数(高度),列数(宽度),颜色通道;

灰度图为二维数组,分别为行数(高度),列数(宽度)。

3. 基础操作 图像的读取

文件路径:不能包含中文字符

读取模式:

cv2.IMREAD_COLOR 彩色BGR模式,忽略透明度,可以用 1代替,默认编译模式。
cv2.IMREAD_GRAYSCALE 灰度模式,可以用 0 代替,将图像转换为灰度图像。
cv2.IMREAD_UNCHANGED 输出包含alpha通道的图像,可以用 -1 代替

补充说明:

Alpha通道是指图像中的透明度信息,它可以控制像素的透明度和不透明度。对于包含alpha通道的图像,在读取时需要使用IMREAD_UNCHANGED标志来保留这些透明度信息,以便后续处理和操作。如果不使用该标志,则读取的图像将被默认处理成不包含alpha通道的普通图像。

代码示例:

#包的配置
import cv2
import matplotlib.pyplot as plt
import numpy as np


img=cv2.imread(自行复制图片路径到这里) # 注意不要使用双层引号
print(img)               #打印像素
print(img.shape)         #(高,宽,通道)

第一个print会打印出来图像矩阵,由于显示太多就不展示了,大家自己尝试看看效果;

第二个print会打印出图像的高、宽和通道数,彩色图像的通道数是3,灰度图的通道数为1

图像的显示

cv2.imshow("窗口名", 要显示的图片)

窗口名,通常是字符串类型

cv2.imshow("img",img)
cv2.waitKey(0)      #等待键盘输入,输入任意键返回
cv2.destroyAllWindows()    #关闭窗口

硬核知识:

4. 截取部分图像数据(ROI)

image=img[ : , : ]

冒号前后是像素区域

截取步骤就这一行代码就能实现,例如:image=img[0:200,100:200]

再加上面的图片读取,图片显示,就能完整的看到效果了

img=cv2.imread("自行复制图像路径")
image=img[0:200,100:200]
cv2.imshow("image",image)
cv2.waitKey(0)      #等待键盘输入,输入任意键返回
cv2.destroyAllWindows()    #关闭窗口

5. 视频的读取

对于视频的处理,其实和对图像的处理是相同的,原理就是利用循环将视频拆分成一帧一帧的图像,对每一帧图像进行处理

对视频的处理主要包括如下步骤:

cv2.VideoCapture() 读取摄像头画面或者视频文件,本文章使用视频文件来演示

#视频格式
vc=cv2.VideoCapture("自行复制视频路径")

#检查是否打开成功
if vc.isOpened():
    open, frame = vc.read()
else:
    open = False

#逐帧处理
while open:
    ret, frame = vc.read()
    if frame is None:
        break
    if ret == True:
        #灰度处理
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  #转换为灰度图
        cv2.imshow('result',gray)     # 将灰度图输出
        if cv2.waitKey(100) & 0xFF == 27: #处理完后每一帧的等待时间
            break
vc.release()
cv2.destroyAllWindows()

6. 边界填充

边界填充常见的有6种方法

BORDER_REPLICATE:复制法,也就是复制最边缘像素。

BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制

例如:fedcba|abcdefgh|hgfedcb

BORDER_REFLECT_101:反射法,也就是以最边缘像素为轴,对称,gfedcb|abcdefgh|gfedcba

BORDER_WRAP:外包装法abcdefgh|abcdefgh|abcdefg

BORDER_CONSTANT:常量法,常数值填充,需要在设置一个value值,以显示填充的颜色。

下面是一张示例图像,经过程序处理后得到的六张图像

代码示例:

img = cv2.imread("自行复制图像链接")

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # 将BGR图片转换为RGB图片
top_size, bottom_size, left_size, right_size = (50, 50, 50, 50)  # 定义图片尺寸

replicate = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_CONSTANT, value=0)
plt.imshow(img)  # 原图显示
plt.show()

plt.subplot(2, 3, 1), plt.imshow(img, 'gray'), plt.title('original')
plt.subplot(2, 3, 2), plt.imshow(replicate, 'gray'), plt.title('replicate')
plt.subplot(2, 3, 3), plt.imshow(reflect, 'gray'), plt.title('reflect')
plt.subplot(2, 3, 4), plt.imshow(reflect101, 'gray'), plt.title('reflect')
plt.subplot(2, 3, 5), plt.imshow(wrap, 'gray'), plt.title('wrap')
plt.subplot(2, 3, 6), plt.imshow(constant, 'gray'), plt.title('constant')

plt.show()
cv2.waitKey(0)
cv2.destroyAllWindows()

7. 图像的加法 图像的加法

**前提:**两张图像拥有相同的大小和类型,在处理时应该将两幅图像相同位置的像素的灰度值(灰度图)或彩色像素各通道值(彩色图像)分别相加。通常情况下,在灰度图像中,像素用 8 个比特位(一个字节)来表示,像素值的范围是[0,255]。两个像素值在进行加法运算时,求得的和很可能超过 255,此时就将这个数%256取余。

使用价值

往小处讲:

图像的加法可以实现两张图像的融合,同时保留原图像的信息。在灰度图像中,加法会使图像变亮;而在彩色图像中,加法会使图像颜色更鲜艳。加法也可用于实现图像的平均化和均衡化。

向大处说:

代码示例:

import cv2
# 读取两张灰度图像
img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)
# 将两张图像相同位置的像素灰度值相加
result = cv2.add(img1, img2)
# 显示结果图像
cv2.imshow('Result Image', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像的融合

cv2.addWeighted(图片, 0.5, 图片, 0.4, 0)

解释:第一个参数是输入的第一张图像,第二个参数是第一张图像的权重值;第三个参数是输入的第二张图像,第四个参数是第二张图像的权重值;第五个参数是一个可选的缩放常数,可以用于调整输出图像的亮度。

img_1 = cv2.imread(自行复制图像路径)
img_2 = cv2.imread(自行复制图像路径)

# 打印出图片像素尺寸
print(img_1.shape)
print(img_2.shape)

# 统一图片尺寸
res_1 = cv2.resize(img_1, (1700, 1200))  # 图像重置函数
res_2 = cv2.resize(img_2, (1700, 1200))

# 图片融合
res = cv2.addWeighted(res_1, 0.4, res_2, 0.8, 0)
res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)  # 将BGR图片转换为RGB图片

plt.imshow(res)
plt.show()
cv2.waitKey(0)
cv2.destroyAllWindows()

这是将两张图片融合后的效果示例

以上就是Python+OpenCV实现图像基本操作的示例详解的详细内容,更多关于Python OpenCV图像基本操作的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯