文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

排序算法及其C实现是怎样的

2023-06-04 02:51

关注

这期内容当中小编将会给大家带来有关排序算法及其C实现是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

排序算法(Sorting Algorithm)是计算机算法的一个组成部分。

排序的目标是将一组数据 (即一个序列) 重新排列,排列后的数据符合从大到小 (或者从小到大) 的次序。这是古老但依然富有挑战的问题。Donald Knuth的经典之作《计算机程序设计艺术》(The Art of Computer Programming)的第三卷就专门用于讨论排序和查找。从无序到有序,有效的减小了系统的熵值,增加了系统的有序度。对于一个未知系统来说,有序是非常有用的先验知识。因此,排序算法很多时候构成了其他快速算法的基础,比如二分法就是基于有序序列的查找算法。直到今天,排序算法依然是计算机科学积极探索的一个方向。

我在这里列出一些最常见的排序方法,并尝试使用C语言实现它们。一组数据存储为一个数组a,数组有n个元素。a[i]为数组中的一个元素,i为元素在数组中的位置 (index)。根据C的规定,数组下标从0开始。假设数组从左向右排列,下标为0的元素位于数组的最左边。

序列将最终排列成从小到大的顺序。下面函数中的参数ac是数组中元素的数目,也就是n。

(C语言的数组名都转成指针,传递给函数,所以需要传递数组中元素的数目ac给函数,详细见"Expert C Programming: Deep C Secrets"一书)

排序算法及其C实现是怎样的

起始数列 (unsorted)

排序算法及其C实现是怎样的

有序数列 (sorted)

冒泡排序 (Bubble Sort)

对于一个已经排序好的序列,它的任意两个相邻元素,都应该满足a[i-1] <= a[i]的关系。冒泡排序相当暴力的实现了这一目标:不断扫描相邻元素,看它们是否违章。一旦违章,立即纠正。在冒泡排序时,计算机从右向左遍历数组,比较相邻的两个元素。如果两个元素的顺序是错的,那么sorry,请两位互换。如果两个元素的顺序是正确的,则不做交换。经过一次遍历,我们可以保证最小的元素(泡泡)处于最左边的位置。

然而,经过这么一趟,冒泡排序不能保证所有的元素已经按照次序排列好。我们需要再次从右向左遍历数组元素,进行冒泡排序。这一次遍历,我们不用考虑最左端的元素,因为该元素已经是最小的。遍历结束后,继续重复扫描…… 总共可能进行n-1次的遍历。

如果某次遍历过程中,没有发生交换,bingo,这个数组已经排序好,可以中止排序。如果起始时,最大的元素位于最左边,那么冒泡算法必须经过n-1次遍历才能将数组排列好,而不能提前完成排序。

void bubble_sort(int a[], int ac){        int i,j;    int sign;    for (j = 0; j < ac-1; j++) {        sign = 0;        for(i = ac-1; i > j; i--)        {            if(a[i-1] > a[i]) {                sign = 1;                swap(a+i, a+i-1);            }        }        if (sign == 0) break;    }}

  

插入排序 (Insertion Sort)

假设在新生报到的时候,我们将新生按照身高排好队(也就是排序)。如果这时有一名学生加入,我们将该名学生加入到队尾。如果这名学生比前面的学生低,那么就让该学生和前面的学生交换位置。这名学生最终会换到应在的位置。这就是插入排序的基本原理。

对于起始数组来说,我们认为最初,有一名学生,也就是最左边的元素(i=0),构成一个有序的队伍。

随后有第二个学生(i=1)加入队伍,第二名学生交换到应在的位置;随后第三个学生加入队伍,第三名学生交换到应在的位置…… 当n个学生都加入队伍时,我们的排序就完成了。

void insert_sort(int a[], int ac){        int i,j;        for (j=1; j < ac; j++)     {        i = j-1;        while((i>=0) && (a[i+1] < a[i]))         {            swap(a+i+1, a+i);            i--;        }    }}

选择排序 (Selection Sort)

排序的最终结果:任何一个元素都不大于位于它右边的元素 (a[i] <= a[j], if i <= j)。所以,在有序序列中,最小的元素排在最左的位置,第二小的元素排在i=1的位置…… 最大的元素排在最后。

选择排序是先找到起始数组中最小的元素,将它交换到i=0;然后寻找剩下元素中最小的元素,将它交换到i=1的位置…… 直到找到第二大的元素,将它交换到n-2的位置。这时,整个数组的排序完成。

void select_sort(int a[], int ac) {        int i,j;    int min_idx;    for (j = 0; j < ac-1; j++)     {        min_idx = j;        for (i = j+1; i < ac; i++)         {            if (a[i] < a[min_idx])             {                min_idx = i;            }        }        swap(a+j, a+min_idx);    }    }

希尔排序 (Shell Sort)

我们在冒泡排序中提到,最坏的情况发生在大的元素位于数组的起始。这些位于数组起始的大元素需要多次遍历,才能交换到队尾。这样的元素被称为乌龟(turtle)。

乌龟元素的原因在于,冒泡排序总是相邻的两个元素比较并交换。所以每次从右向左遍历,大元素只能向右移动一位。(小的元素位于队尾,被称为兔子(rabbit)元素,它们可以很快的交换到队首。)

希尔排序是以更大的间隔来比较和交换元素,这样,大的元素在交换的时候,可以向右移动不止一个位置,从而更快的移动乌龟元素。比如,可以将数组分为4个子数组(i=4k, i=4k+1, i=4k+2, i=4k+3),对每个子数组进行冒泡排序。比如子数组i=0,4,8,12...。此时,每次交换的间隔为4。

完成对四个子数组的排序后,数组的顺序并不一定能排列好。希尔排序会不断减小间隔,重新形成子数组,并对子数组冒泡排序…… 当间隔减小为1时,就相当于对整个数组进行了一次冒泡排序。随后,数组的顺序就排列好了。

希尔排序不止可以配合冒泡排序,还可以配合其他的排序方法完成。

void shell_sort(int a[], int ac){    int step;    int i,j;    int nsub;    int *sub;        step = 1;    while(step < ac) step = 3*step + 1;        while(step > 1) {              step = step/3 + 1;       for(i=0; i<step; i++) {                      nsub = (ac - i - 1)/step + 1;                       sub = (int *) malloc(sizeof(int)*nsub);           for(j=0; j<nsub; j++) {               sub[j] = a[i+j*step];            }                      bubble_sort(sub, nsub);                      for(j=0; j<nsub; j++) {               a[i+j*step] = sub[j];           }                      free(sub);       }        }}

Shell Sorting依赖于间隔(step)的选取。一个常见的选择是将本次间隔设置为上次间隔的1/1.3。见参考书籍。

归并排序 (Merge Sort)

如果我们要将一副按照数字大小排序。此前已经有两个人分别将其中的一半排好顺序。那么我们可以将这两堆向上放好,假设小的牌在上面。此时,我们将看到牌堆中最上的两张牌。

我们取两张牌中小的那张取出放在手中。两个牌堆中又是两张牌暴露在最上面,继续取小的那张放在手中…… 直到所有的牌都放入手中,那么整副牌就排好顺序了。这就是归并排序。

下面的实现中,使用递归:

void merge_sort(int *a, int ac){    int i, j, k;        int ac1, ac2;    int *ah2, *ah3;    int *container;            if (ac <= 1) return;        ac1 = ac/2;    ac2 = ac - ac1;    ah2 = a + 0;    ah3 = a + ac1;        merge_sort(ah2, ac1);    merge_sort(ah3, ac2);         i = 0;    j = 0;    k = 0;    container = (int *) malloc(sizeof(int)*ac);    while(i<ac1 && j<ac2) {        if (ah2[i] <= ah3[j]) {            container[k++] = ah2[i++];        }         else {            container[k++] = ah3[j++];        }    }    while (i < ac1) {        container[k++] = ah2[i++];    }    while (j < ac2) {        container[k++] = ah3[j++];    }        for(i=0; i<ac; i++) {        a[i] = container[i];    }        free(container);}

快速排序 (Quick Sort)

我们依然考虑按照身高给学生排序。在快速排序中,我们随便挑出一个学生,以该学生的身高为参考(pivot)。然后让比该学生低的站在该学生的右边,剩下的站在该学生的左边。

很明显,所有的学生被分成了两组。该学生右边的学生的身高都大于该学生左边的学生的身高。

我们继续,在低身高学生组随便挑出一个学生,将低身高组的学生分为两组(很低和不那么低)。同样,将高学生组也分为两组(不那么高和很高)。

如此继续细分,直到分组中只有一个学生。当所有的分组中都只有一个学生时,则排序完成。

在下面的实现中,使用递归:

void quick_sort(int a[], int ac){            int pivot;        int sample;            swap(a+0, a+ac/2);    pivot = 1;         for (sample=1; sample<ac; sample++) {        if (a[sample] < a[0]) {            swap(a+pivot, a+sample);            pivot++;        }    }        swap(a+0,a+pivot-1);        if (ac<=2) return;    else {                quick_sort(a, pivot);        quick_sort(a+pivot, ac-pivot);    }}

理想的pivot是采用分组元素中的中位数。然而寻找中位数的算法需要另行实现。也可以随机选取元素作为pivot,随机选取也需要另行实现。为了简便,我每次都采用中间位置的元素作为pivot。 

堆排序 (Heap Sort)

堆(heap)是常见的数据结构。它是一个有优先级的队列。最常见的堆的实现是一个有限定操作的Complete Binary Tree。这个Complete Binary Tree保持堆的特性,也就是父节点(parent)大于子节点(children)。因此,堆的根节点是所有堆元素中最小的。堆定义有插入节点和删除根节点操作,这两个操作都保持堆的特性。

我们可以将无序数组构成一个堆,然后不断取出根节点,最终构成一个有序数组。

堆的更详细描述请阅读参考书目。

下面是堆的数据结构,以及插入节点和删除根节点操作。你可以很方便的构建堆,并取出根节点,构成有序数组。

void insert(int new, int heap[]) {    int childIdx, parentIdx;    heap[0] = heap[0] + 1;    heap[heap[0]] = new;            percolate_up(heap);}static void percolate_up(int heap[]) {    int lightIdx, parentIdx;    lightIdx  = heap[0];    parentIdx = lightIdx/2;        while((parentIdx > 0) && (heap[lightIdx] < heap[parentIdx])) {                swap(heap + lightIdx, heap + parentIdx);         lightIdx  = parentIdx;        parentIdx = lightIdx/2;    }}int delete_min(int heap[]) {    int min;    if (heap[0] < 1) {                printf("Error: delete_min from an empty heap.");        exit(1);    }        min = heap[1];    swap(heap + 1, heap + heap[0]);    heap[0] -= 1;        percolate_down(heap);     return min;}static void percolate_down(int heap[]) {    int heavyIdx;    int childIdx1, childIdx2, minIdx;    int sign;     heavyIdx = 1;    do {        sign     = 0;        childIdx1 = heavyIdx*2;        childIdx2 = childIdx1 + 1;        if (childIdx1 > heap[0]) {                        break;         }        else if (childIdx2 > heap[0]) {                        minIdx = childIdx1;        }        else {            minIdx = (heap[childIdx1] < heap[childIdx2]) ?                          childIdx1 : childIdx2;        }        if (heap[heavyIdx] > heap[minIdx]) {                        swap(heap + heavyIdx, heap + minIdx);            heavyIdx = minIdx;            sign = 1;        }    } while(sign == 1);}

除了上面的算法,还有诸如Bucket Sorting, Radix Sorting涉及。我会在未来实现了相关算法之后,补充到这篇文章中。相关算法的时间复杂度分析可以参考书目中找到。我自己也做了粗糙的分析。如果博客园能支持数学公式的显示,我就把自己的分析过程贴出来,用于引玉。

上面的各个代码是我自己写的,只进行了很简单的测试。如果有错漏,先谢谢你的指正。

最后,上文中用到的交换函数为:

void swap(int *pa, int *pb){    int tmp;    tmp = *pa;    *pa = *pb;    *pb = tmp;}

上述就是小编为大家分享的排序算法及其C实现是怎样的了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯