这篇“pycocotools库怎么安装和使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“pycocotools库怎么安装和使用”文章吧。
pycocotools库的简介
pycocotools是什么?即python api tools of COCO。
COCO是一个大型的图像数据集,用于目标检测、分割、人的关键点检测、素材分割和生成。
这个包提供了Matlab、Python和luaapi,这些api有助于在COCO中加载、解析和可视化注释。
COCO网站上也描述了注释的确切格式。
Matlab和PythonAPI是完整的,LuaAPI只提供基本功能。
pycocotools库的安装
pip install pycocotools==2.0.0orpip install pycocotools-windows
pycocotools库的使用方法
1、from pycocotools.coco import COCO
__author__ = 'tylin'__version__ = '2.0'# Interface for accessing the Microsoft COCO dataset. # Microsoft COCO is a large image dataset designed for object detection,# segmentation, and caption generation. pycocotools is a Python API that# assists in loading, parsing and visualizing the annotations in COCO.# Please visit http://mscoco.org/ for more information on COCO, including# for the data, paper, and tutorials. The exact format of the annotations# is also described on the COCO website. For example usage of the pycocotools# please see pycocotools_demo.ipynb. In addition to this API, please download both# the COCO images and annotations in order to run the demo. # An alternative to using the API is to load the annotations directly# into Python dictionary# Using the API provides additional utility functions. Note that this API# supports both *instance* and *caption* annotations. In the case of# captions not all functions are defined (e.g. categories are undefined). # The following API functions are defined:# COCO - COCO api class that loads COCO annotation file and prepare data structures.# decodeMask - Decode binary mask M encoded via run-length encoding.# encodeMask - Encode binary mask M using run-length encoding.# getAnnIds - Get ann ids that satisfy given filter conditions.# getCatIds - Get cat ids that satisfy given filter conditions.# getImgIds - Get img ids that satisfy given filter conditions.# loadAnns - Load anns with the specified ids.# loadCats - Load cats with the specified ids.# loadImgs - Load imgs with the specified ids.# annToMask - Convert segmentation in an annotation to binary mask.# showAnns - Display the specified annotations.# loadRes - Load algorithm results and create API for accessing them.# download - Download COCO images from mscoco.org server.# Throughout the API "ann"=annotation, "cat"=category, and "img"=image.# Help on each functions can be accessed by: "help COCO>function". # See also COCO>decodeMask,# COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds,# COCO>getImgIds, COCO>loadAnns, COCO>loadCats,# COCO>loadImgs, COCO>annToMask, COCO>showAnns # Microsoft COCO Toolbox. version 2.0# Data, paper, and tutorials available at: http://mscoco.org/# Code written by Piotr Dollar and Tsung-Yi Lin, 2014.# Licensed under the Simplified BSD License [see bsd.txt]
2、输出COCO数据集信息并进行图片可视化
from pycocotools.coco import COCOimport matplotlib.pyplot as pltimport cv2import osimport numpy as npimport random #1、定义数据集路径cocoRoot = "F:/File_Python/Resources/image/COCO"dataType = "val2017"annFile = os.path.join(cocoRoot, f'annotations/instances_{dataType}.json')print(f'Annotation file: {annFile}') #2、为实例注释初始化COCO的APIcoco=COCO(annFile) #3、采用不同函数获取对应数据或类别ids = coco.getCatIds('person')[0] #采用getCatIds函数获取"person"类别对应的IDprint(f'"person" 对应的序号: {ids}') id = coco.getCatIds(['dog'])[0] #获取某一类的所有图片,比如获取包含dog的所有图片imgIds = coco.catToImgs[id]print(f'包含dog的图片共有:{len(imgIds)}张, 分别是:',imgIds) cats = coco.loadCats(1) #采用loadCats函数获取序号对应的类别名称print(f'"1" 对应的类别名称: {cats}') imgIds = coco.getImgIds(catIds=[1]) #采用getImgIds函数获取满足特定条件的图片(交集),获取包含person的所有图片print(f'包含person的图片共有:{len(imgIds)}张') #4、将图片进行可视化imgId = imgIds[10]imgInfo = coco.loadImgs(imgId)[0]print(f'图像{imgId}的信息如下:\n{imgInfo}') imPath = os.path.join(cocoRoot, 'images', dataType, imgInfo['file_name']) im = cv2.imread(imPath)plt.axis('off')plt.imshow(im)plt.show() plt.imshow(im); plt.axis('off')annIds = coco.getAnnIds(imgIds=imgInfo['id']) # 获取该图像对应的anns的Idprint(f'图像{imgInfo["id"]}包含{len(anns)}个ann对象,分别是:\n{annIds}')anns = coco.loadAnns(annIds) coco.showAnns(anns)print(f'ann{annIds[3]}对应的mask如下:')mask = coco.annToMask(anns[3])plt.imshow(mask); plt.axis('off')
以上就是关于“pycocotools库怎么安装和使用”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注编程网行业资讯频道。