给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
- 输入:[0,0,null,0,0]
- 输出:1
- 解释:如图所示,一台摄像头足以监控所有节点。
示例 2:
- 输入:[0,0,null,0,null,0,null,null,0]
- 输出:2
- 解释:需要至少两个摄像头来监视树的所有节点。上图显示了摄像头放置的有效位置之一。
提示:
- 给定树的节点数的范围是 [1, 1000]。
- 每个节点的值都是 0。
思路
这道题目首先要想,如何放置,才能让摄像头最小的呢?
从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!
这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。
所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。
那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?
因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。
所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
局部最优推出全局最优,找不出反例,那么就按照贪心来!
此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
此时这道题目还有两个难点:
- 二叉树的遍历
- 如何隔两个节点放一个摄像头
确定遍历顺序
在二叉树中如何从低向上推导呢?
可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。
后序遍历代码如下:
- int traversal(TreeNode* cur) {
-
- // 空节点,该节点有覆盖
- if (终止条件) return ;
-
- int left = traversal(cur->left); // 左
- int right = traversal(cur->right); // 右
-
- 逻辑处理 // 中
- return ;
- }
注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态
如何隔两个节点放一个摄像头
此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!
来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:
有如下三种:
- 该节点无覆盖
- 本节点有摄像头
- 本节点有覆盖
我们分别有三个数字来表示:
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
大家应该找不出第四个节点的状态了。
一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。
因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢?空节点表示无覆盖?表示有摄像头?还是有覆盖呢?
回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。
那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。
所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
接下来就是递推关系。
那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。
代码如下:
- // 空节点,该节点有覆盖
- if (cur == NULL) return 2;
递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。
主要有如下四类情况:
- 情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
如图:
监控二叉树2
代码如下:
- // 左右节点都有覆盖
- if (left == 2 && right == 2) return 0;
- 情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:
left == 0 && right == 0 左右节点无覆盖 left == 1 && right == 0 左节点有摄像头,右节点无覆盖 left == 0 && right == 1 左节点有无覆盖,右节点摄像头 left == 0 && right == 2 左节点无覆盖,右节点覆盖 left == 2 && right == 0 左节点覆盖,右节点无覆盖
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
代码如下:
- if (left == 0 || right == 0) {
- result++;
- return 1;
- }
- 情况3:左右节点至少有一个有摄像头
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
left == 1 && right == 2 左节点有摄像头,右节点有覆盖 left == 2 && right == 1 左节点有覆盖,右节点有摄像头 left == 1 && right == 1 左右节点都有摄像头
代码如下:
- if (left == 1 || right == 1) return 2;
从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
监控二叉树1
这种情况也是大多数同学容易迷惑的情况。
- 情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
监控二叉树3
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:
- int minCameraCover(TreeNode* root) {
- result = 0;
- if (traversal(root) == 0) { // root 无覆盖
- result++;
- }
- return result;
- }
以上四种情况我们分析完了,代码也差不多了,整体代码如下:
(以下我的代码注释很详细,为了把情况说清楚,特别把每种情况列出来。)
C++代码如下:
- // 版本一
- class Solution {
- private:
- int result;
- int traversal(TreeNode* cur) {
-
- // 空节点,该节点有覆盖
- if (cur == NULL) return 2;
-
- int left = traversal(cur->left); // 左
- int right = traversal(cur->right); // 右
-
- // 情况1
- // 左右节点都有覆盖
- if (left == 2 && right == 2) return 0;
-
- // 情况2
- // left == 0 && right == 0 左右节点无覆盖
- // left == 1 && right == 0 左节点有摄像头,右节点无覆盖
- // left == 0 && right == 1 左节点有无覆盖,右节点摄像头
- // left == 0 && right == 2 左节点无覆盖,右节点覆盖
- // left == 2 && right == 0 左节点覆盖,右节点无覆盖
- if (left == 0 || right == 0) {
- result++;
- return 1;
- }
-
- // 情况3
- // left == 1 && right == 2 左节点有摄像头,右节点有覆盖
- // left == 2 && right == 1 左节点有覆盖,右节点有摄像头
- // left == 1 && right == 1 左右节点都有摄像头
- // 其他情况前段代码均已覆盖
- if (left == 1 || right == 1) return 2;
-
- // 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
- // 这个 return -1 逻辑不会走到这里。
- return -1;
- }
-
- public:
- int minCameraCover(TreeNode* root) {
- result = 0;
- // 情况4
- if (traversal(root) == 0) { // root 无覆盖
- result++;
- }
- return result;
- }
- };
在以上代码的基础上,再进行精简,代码如下:
- // 版本二
- class Solution {
- private:
- int result;
- int traversal(TreeNode* cur) {
- if (cur == NULL) return 2;
- int left = traversal(cur->left); // 左
- int right = traversal(cur->right); // 右
- if (left == 2 && right == 2) return 0;
- else if (left == 0 || right == 0) {
- result++;
- return 1;
- } else return 2;
- }
- public:
- int minCameraCover(TreeNode* root) {
- result = 0;
- if (traversal(root) == 0) { // root 无覆盖
- result++;
- }
- return result;
- }
- };
大家可能会惊讶,居然可以这么简短,其实就是在版本一的基础上,使用else把一些情况直接覆盖掉了。
在网上关于这道题解可以搜到很多这种神级别的代码,但都没讲不清楚,如果直接看代码的话,指定越看越晕,所以建议大家对着版本一的代码一步一步来哈,版本二中看不中用!。
总结
本题的难点首先是要想到贪心的思路,然后就是遍历和状态推导。
在二叉树上进行状态推导,其实难度就上了一个台阶了,需要对二叉树的操作非常娴熟。
这道题目是名副其实的hard,大家感受感受,哈哈。