文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C语言数据结构详细解析二叉树的操作

2024-04-02 19:55

关注

二叉树分类

满二叉树

除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树。也可以理解为每一层的结点数都达到最大值的二叉树。

完全二叉树

一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。

简单的说,完全二叉树就是最后一层可以有缺失的满二叉树(完全二叉树是一种特殊的满二叉树),并且是从右往左的缺失。

二叉树性质

性质的使用

在具有 2n 个结点的完全二叉树中,叶子结点个数为( )

A n

B n + 1

C n - 1

D n / 2

分析:

设度为 0 的结点有 x0 个

设度为 1 的结点有 x1 个

设度为 2 的结点有 x2 个

x0 + x1 + x2 = 2n

x0 = x2 + 1

由上面两个式子可推出:2 * 2x2 + x1 + 1 = 2n

因为是完全二叉树,x1 可能是0,1,但是要使上式结果为偶数,x1只能是1,所以 x2 等于n , 选A。

二叉树的遍历

首先我们先创建一个简单的二叉树

typedef char BTDataType;
typedef struct BinaryTreeNode {
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
	BTDataType data;
}BTNode;
int main()
{
	BTNode* A = (BTNode*)malloc(sizeof(BTNode));
	A->data = 'A';
	A->left = NULL;
	A->right = NULL;
	BTNode* B = (BTNode*)malloc(sizeof(BTNode));
	B->data = 'B';
	B->left = NULL;
	B->right = NULL;
	BTNode* C = (BTNode*)malloc(sizeof(BTNode));
	C->data = 'C';
	C->left = NULL;
	C->right = NULL;
	BTNode* D = (BTNode*)malloc(sizeof(BTNode));
	D->data = 'D';
	D->left = NULL;
	D->right = NULL;
	BTNode* E = (BTNode*)malloc(sizeof(BTNode));
	E->data = 'E';
	E->left = NULL;
	E->right = NULL;
	A->left = B;
	A->right = C;
	B->left = D;
	B->right = E;
	LevelOrder(A);
}

前序遍历

前序(先序): 根 -> 左子树 -> 右子树

预期结果:A B D E C

//前序
void PrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		//为了结果更加直观,将NULL打印
		printf("NULL ");
		return;
	}
	//先打印根的数据
	printf("%c ", root->data);
	//遍历左子树
	PrevOrder(root->left);
	//遍历右子树
	PrevOrder(root->right);
}

编译结果:

中序遍历

中序:左子树 -> 根 -> 右子树

预期结果:D B E A C

void MidOrder(BTNode* root)
{
	//为了结果更加直观,将NULL打印
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	MidOrder(root->left);
	printf("%c ", root->data);
	MidOrder(root->right);
}

编译结果:

后序遍历

后续:左子树 -> 右子树 -> 根

预期结果:D E B C A

void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%c ", root->data);
}

编译结果:

层序遍历

void LevelOrder(BTNode* root)
{
	//创建队列q
	Queue q;
	//初始化队列
	QueueInit(&q);
	//如果根结点不为空,将根节点入队列
	if (root) QueuePush(&q, root);
	//进行循环,直到队列为空
	while (!QueueEmpty(&q))
	{
		//获取队列的第一个数据,并打印
		QDataType front = QueueFront(&q);
		printf("%c ", front->data);
		//对头数据出队列
		QueuePop(&q);
		//如果左子树不为空,左子树入队列
		if (front->left != NULL)
		{
			QueuePush(&q, front->left);
		}
		//如果右子树不为空,右子树入队列
		if (front->right != NULL)
		{
			QueuePush(&q, front->right);
		}
	}
}

求二叉树的节点数

int BTSize(BTNode* root)
{
	return root == NULL ? 0 :1 + BTSize(root->left) + BTSize(root->right);
}

求二叉树叶子结点个数

int BTLeafSize(BTNode* root)
{
	if (root == 0) return 0;
	return root->left == NULL && root->right == NULL ? 1 : BTLeafSize(root->right) + BTLeafSize(root->left);
}

求二叉树的最大深度

int maxDepth(BTNode* root)
{
	if (root == NULL)
		return 0;
	return 1 + fmax(maxDepth(root ->left),maxDepth(root ->right));
}

二叉树的销毁

//二叉树的销毁
//传二级指针是为了改变指针的指向
void DistoryTree(BTNode** root)
{
	if (*root == NULL)
	{
		return;
	}
	DistoryTree(&(*root)->left);
	DistoryTree(&(*root)->right);
	free(*root);
	*root = NULL;
}

到此这篇关于C语言数据结构详细解析二叉树的操作的文章就介绍到这了,更多相关C语言二叉树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯