文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python数字图像处理之图像自动阈值分割示例

2024-04-02 19:55

关注

引言

图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生相应的二值图像。

在skimage库中,阈值分割的功能是放在filters模块中。

我们可以手动指定一个阈值,从而来实现分割。也可以让系统自动生成一个阈值,下面几种方法就是用来自动生成阈值。

1、threshold_otsu

基于Otsu的阈值分割方法,函数调用格式:

skimage.filters.threshold_otsu(image, nbins=256)

参数image是指灰度图像,返回一个阈值。

from skimage import data,filters
import matplotlib.pyplot as plt
image = data.camera()
thresh = filters.threshold_otsu(image)   #返回一个阈值
dst =(image <= thresh)*1.0   #根据阈值进行分割
plt.figure('thresh',figsize=(8,8))
plt.subplot(121)
plt.title('original image')
plt.imshow(image,plt.cm.gray)
plt.subplot(122)
plt.title('binary image')
plt.imshow(dst,plt.cm.gray)
plt.show()

返回阈值为87,根据87进行分割得下图:

2、threshold_yen

使用方法同上:

thresh = filters.threshold_yen(image)

返回阈值为198,分割如下图:

3、threshold_li

使用方法同上:

thresh = filters.threshold_li(image)

返回阈值64.5,分割如下图:

4、threshold_isodata

阈值计算方法:

threshold = (image[image <= threshold].mean() +image[image > threshold].mean()) / 2.0

使用方法同上:

thresh = filters.threshold_isodata(image)

返回阈值为87,因此分割效果和threshold_otsu一样。

5、threshold_adaptive

调用函数为:

skimage.filters.threshold_adaptive(image, block_size, method='gaussian')

block_size: 块大小,指当前像素的相邻区域大小,一般是奇数(如3,5,7。。。)

method: 用来确定自适应阈值的方法,有'mean', 'generic', 'gaussian' 和 'median'。

省略时默认为gaussian

该函数直接访问一个阈值后的图像,而不是阈值。

from skimage import data,filters
import matplotlib.pyplot as plt
image = data.camera()
dst =filters.threshold_adaptive(image, 15) #返回一个阈值图像
plt.figure('thresh',figsize=(8,8))
plt.subplot(121)
plt.title('original image')
plt.imshow(image,plt.cm.gray)
plt.subplot(122)
plt.title('binary image')
plt.imshow(dst,plt.cm.gray)
plt.show()

大家可以修改block_size的大小和method值来查看更多的效果。如:

dst1 =filters.threshold_adaptive(image,31,'mean') 
dst2 =filters.threshold_adaptive(image,5,'median')

两种效果如下:

以上就是python数字图像处理之图像自动阈值分割示例的详细内容,更多关于python数字图像自动阈值分割的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯