线程同步
1.线程同步
1.1卖票【应用】
-
案例需求
某电影院目前正在上映国产大片,共有100张票,而它有3个窗口卖票,请设计一个程序模拟该电影院卖票
-
实现步骤
-
定义一个类SellTicket实现Runnable接口,里面定义一个成员变量:private int tickets = 100;
-
在SellTicket类中重写run()方法实现卖票,代码步骤如下
-
判断票数大于0,就卖票,并告知是哪个窗口卖的
-
卖了票之后,总票数要减1
-
票卖没了,线程停止
-
定义一个测试类SellTicketDemo,里面有main方法,代码步骤如下
-
创建SellTicket类的对象
-
创建三个Thread类的对象,把SellTicket对象作为构造方法的参数,并给出对应的窗口名称
-
启动线程
-
-
代码实现
public class SellTicket implements Runnable { private int tickets = 100; //在SellTicket类中重写run()方法实现卖票,代码步骤如下 @Override public void run() { while (true) { if(ticket <= 0){ //卖完了 break; }else{ try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } ticket--; System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticket + "张票"); } } }}public class SellTicketDemo { public static void main(String[] args) { //创建SellTicket类的对象 SellTicket st = new SellTicket(); //创建三个Thread类的对象,把SellTicket对象作为构造方法的参数,并给出对应的窗口名称 Thread t1 = new Thread(st,"窗口1"); Thread t2 = new Thread(st,"窗口2"); Thread t3 = new Thread(st,"窗口3"); //启动线程 t1.start(); t2.start(); t3.start(); }}
1.2卖票案例的问题
-
卖票出现了问题
-
相同的票出现了多次
-
出现了负数的票
-
-
问题产生原因
线程执行的随机性导致的,可能在卖票过程中丢失cpu的执行权,导致出现问题
1.3同步代码块解决数据安全问题【应用】
-
安全问题出现的条件
-
是多线程环境
-
有共享数据
-
有多条语句操作共享数据
-
-
如何解决多线程安全问题呢?
- 基本思想:让程序没有安全问题的环境
-
怎么实现呢?
-
把多条语句操作共享数据的代码给锁起来,让任意时刻只能有一个线程执行即可
-
Java提供了同步代码块的方式来解决
-
-
同步代码块格式:
synchronized(任意对象) { 多条语句操作共享数据的代码 }
synchronized(任意对象):就相当于给代码加锁了,任意对象就可以看成是一把锁
-
同步的好处和弊端
-
好处:解决了多线程的数据安全问题
-
弊端:当线程很多时,因为每个线程都会去判断同步上的锁,这是很耗费资源的,无形中会降低程序的运行效率
-
-
代码演示
public class SellTicket implements Runnable { private int tickets = 100; private Object obj = new Object(); @Override public void run() { while (true) { synchronized (obj) { // 对可能有安全问题的代码加锁,多个线程必须使用同一把锁 //t1进来后,就会把这段代码给锁起来 if (tickets > 0) { try { Thread.sleep(100); //t1休息100毫秒 } catch (InterruptedException e) { e.printStackTrace(); } //窗口1正在出售第100张票 System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票"); tickets--; //tickets = 99; } } //t1出来了,这段代码的锁就被释放了 } }}public class SellTicketDemo { public static void main(String[] args) { SellTicket st = new SellTicket(); Thread t1 = new Thread(st, "窗口1"); Thread t2 = new Thread(st, "窗口2"); Thread t3 = new Thread(st, "窗口3"); t1.start(); t2.start(); t3.start(); }}
1.4同步方法解决数据安全问题【应用】
-
同步方法的格式
同步方法:就是把synchronized关键字加到方法上
修饰符 synchronized 返回值类型 方法名(方法参数) { 方法体;}
同步方法的锁对象是什么呢?
this
-
静态同步方法
同步静态方法:就是把synchronized关键字加到静态方法上
修饰符 static synchronized 返回值类型 方法名(方法参数) { 方法体;}
同步静态方法的锁对象是什么呢?
类名.class
-
代码演示
public class MyRunnable implements Runnable { private static int ticketCount = 100; @Override public void run() { while(true){ if("窗口一".equals(Thread.currentThread().getName())){ //同步方法 boolean result = synchronizedMthod(); if(result){ break; } } if("窗口二".equals(Thread.currentThread().getName())){ //同步代码块 synchronized (MyRunnable.class){ if(ticketCount == 0){ break; }else{ try {Thread.sleep(10); } catch (InterruptedException e) {e.printStackTrace(); } ticketCount--; System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticketCount + "张票"); } } } } } private static synchronized boolean synchronizedMthod() { if(ticketCount == 0){ return true; }else{ try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } ticketCount--; System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticketCount + "张票"); return false; } }}
public class Demo { public static void main(String[] args) { MyRunnable mr = new MyRunnable(); Thread t1 = new Thread(mr); Thread t2 = new Thread(mr); t1.setName("窗口一"); t2.setName("窗口二"); t1.start(); t2.start(); } }
1.5Lock锁【应用】
虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁,为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock
Lock是接口不能直接实例化,这里采用它的实现类ReentrantLock来实例化
-
ReentrantLock构造方法
方法名 说明 ReentrantLock() 创建一个ReentrantLock的实例 -
加锁解锁方法
方法名 说明 void lock() 获得锁 void unlock() 释放锁 -
代码演示
public class Ticket implements Runnable { //票的数量 private int ticket = 100; private Object obj = new Object(); private ReentrantLock lock = new ReentrantLock(); @Override public void run() { while (true) { //synchronized (obj){//多个线程必须使用同一把锁. try { lock.lock(); if (ticket <= 0) { //卖完了 break; } else { Thread.sleep(100); ticket--; System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticket + "张票"); } } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } // } } }}public class Demo { public static void main(String[] args) { Ticket ticket = new Ticket(); Thread t1 = new Thread(ticket); Thread t2 = new Thread(ticket); Thread t3 = new Thread(ticket); t1.setName("窗口一"); t2.setName("窗口二"); t3.setName("窗口三"); t1.start(); t2.start(); t3.start(); }}
1.6死锁
-
概述
线程死锁是指由于两个或者多个线程互相持有对方所需要的资源,导致这些线程处于等待状态,无法前往执行
-
什么情况下会产生死锁
- 资源有限
- 同步嵌套
-
代码演示
public class Demo { public static void main(String[] args) { Object objA = new Object(); Object objB = new Object(); new Thread(()->{ while(true){ synchronized (objA){ //线程一 synchronized (objB){ System.out.println("小康同学正在走路"); } } } }).start(); new Thread(()->{ while(true){ synchronized (objB){ //线程二 synchronized (objA){ System.out.println("小薇同学正在走路"); } } } }).start(); }}
2.生产者消费者
2.1生产者和消费者模式概述【应用】
-
概述
生产者消费者模式是一个十分经典的多线程协作的模式,弄懂生产者消费者问题能够让我们对多线程编程的理解更加深刻。
所谓生产者消费者问题,实际上主要是包含了两类线程:
一类是生产者线程用于生产数据
一类是消费者线程用于消费数据
为了解耦生产者和消费者的关系,通常会采用共享的数据区域,就像是一个仓库
生产者生产数据之后直接放置在共享数据区中,并不需要关心消费者的行为
消费者只需要从共享数据区中去获取数据,并不需要关心生产者的行为
-
Object类的等待和唤醒方法
方法名 说明 void wait() 导致当前线程等待,直到另一个线程调用该对象的 notify()方法或 notifyAll()方法 void notify() 唤醒正在等待对象监视器的单个线程 void notifyAll() 唤醒正在等待对象监视器的所有线程
2.2生产者和消费者案例【应用】
-
案例需求
-
桌子类(Desk):定义表示包子数量的变量,定义锁对象变量,定义标记桌子上有无包子的变量
-
生产者类(Cooker):实现Runnable接口,重写run()方法,设置线程任务
判断是否有包子,决定当前线程是否执行
如果有包子,就进入等待状态,如果没有包子,继续执行,生产包子
生产包子之后,更新桌子上包子状态,唤醒消费者消费包子
-
消费者类(Foodie):实现Runnable接口,重写run()方法,设置线程任务
判断是否有包子,决定当前线程是否执行
如果没有包子,就进入等待状态,如果有包子,就消费包子
消费包子后,更新桌子上包子状态,唤醒生产者生产包子
-
测试类(Demo):里面有main方法,main方法中的代码步骤如下
创建生产者线程和消费者线程对象
分别开启两个线程
-
-
代码实现
public class Desk { //定义一个标记 //true 就表示桌子上有汉堡包的,此时允许吃货执行 //false 就表示桌子上没有汉堡包的,此时允许厨师执行 public static boolean flag = false; //汉堡包的总数量 public static int count = 10; //锁对象 public static final Object lock = new Object();}public class Cooker extends Thread {// 生产者步骤:// 1,判断桌子上是否有汉堡包// 如果有就等待,如果没有才生产。// 2,把汉堡包放在桌子上。// 3,叫醒等待的消费者开吃。 @Override public void run() { while(true){ synchronized (Desk.lock){ if(Desk.count == 0){ break; }else{ if(!Desk.flag){ //生产 System.out.println("厨师正在生产汉堡包"); Desk.flag = true; Desk.lock.notifyAll(); }else{ try {Desk.lock.wait(); } catch (InterruptedException e) {e.printStackTrace(); } } } } } }}public class Foodie extends Thread { @Override public void run() {// 1,判断桌子上是否有汉堡包。// 2,如果没有就等待。// 3,如果有就开吃// 4,吃完之后,桌子上的汉堡包就没有了// 叫醒等待的生产者继续生产// 汉堡包的总数量减一 //套路: //1. while(true)死循环 //2. synchronized 锁,锁对象要唯一 //3. 判断,共享数据是否结束. 结束 //4. 判断,共享数据是否结束. 没有结束 while(true){ synchronized (Desk.lock){ if(Desk.count == 0){ break; }else{ if(Desk.flag){ //有 System.out.println("吃货在吃汉堡包"); Desk.flag = false; Desk.lock.notifyAll(); Desk.count--; }else{ //没有就等待 //使用什么对象当做锁,那么就必须用这个对象去调用等待和唤醒的方法. try {Desk.lock.wait(); } catch (InterruptedException e) {e.printStackTrace(); } } } } } }}public class Demo { public static void main(String[] args) { Foodie f = new Foodie(); Cooker c = new Cooker(); f.start(); c.start(); }}
2.3生产者和消费者案例优化【应用】
-
需求
- 将Desk类中的变量,采用面向对象的方式封装起来
- 生产者和消费者类中构造方法接收Desk类对象,之后在run方法中进行使用
- 创建生产者和消费者线程对象,构造方法中传入Desk类对象
- 开启两个线程
-
代码实现
public class Desk { //定义一个标记 //true 就表示桌子上有汉堡包的,此时允许吃货执行 //false 就表示桌子上没有汉堡包的,此时允许厨师执行 //public static boolean flag = false; private boolean flag; //汉堡包的总数量 //public static int count = 10; //以后我们在使用这种必须有默认值的变量 // private int count = 10; private int count; //锁对象 //public static final Object lock = new Object(); private final Object lock = new Object(); public Desk() { this(false,10); // 在空参内部调用带参,对成员变量进行赋值,之后就可以直接使用成员变量了 } public Desk(boolean flag, int count) { this.flag = flag; this.count = count; } public boolean isFlag() { return flag; } public void setFlag(boolean flag) { this.flag = flag; } public int getCount() { return count; } public void setCount(int count) { this.count = count; } public Object getLock() { return lock; } @Override public String toString() { return "Desk{" + "flag=" + flag + ", count=" + count + ", lock=" + lock + '}'; }}public class Cooker extends Thread { private Desk desk; public Cooker(Desk desk) { this.desk = desk; }// 生产者步骤:// 1,判断桌子上是否有汉堡包// 如果有就等待,如果没有才生产。// 2,把汉堡包放在桌子上。// 3,叫醒等待的消费者开吃。 @Override public void run() { while(true){ synchronized (desk.getLock()){ if(desk.getCount() == 0){ break; }else{ //System.out.println("验证一下是否执行了"); if(!desk.isFlag()){ //生产 System.out.println("厨师正在生产汉堡包"); desk.setFlag(true); desk.getLock().notifyAll(); }else{ try {desk.getLock().wait(); } catch (InterruptedException e) {e.printStackTrace(); } } } } } }}public class Foodie extends Thread { private Desk desk; public Foodie(Desk desk) { this.desk = desk; } @Override public void run() {// 1,判断桌子上是否有汉堡包。// 2,如果没有就等待。// 3,如果有就开吃// 4,吃完之后,桌子上的汉堡包就没有了// 叫醒等待的生产者继续生产// 汉堡包的总数量减一 //套路: //1. while(true)死循环 //2. synchronized 锁,锁对象要唯一 //3. 判断,共享数据是否结束. 结束 //4. 判断,共享数据是否结束. 没有结束 while(true){ synchronized (desk.getLock()){ if(desk.getCount() == 0){ break; }else{ //System.out.println("验证一下是否执行了"); if(desk.isFlag()){ //有 System.out.println("吃货在吃汉堡包"); desk.setFlag(false); desk.getLock().notifyAll(); desk.setCount(desk.getCount() - 1); }else{ //没有就等待 //使用什么对象当做锁,那么就必须用这个对象去调用等待和唤醒的方法. try {desk.getLock().wait(); } catch (InterruptedException e) {e.printStackTrace(); } } } } } }}public class Demo { public static void main(String[] args) { Desk desk = new Desk(); Foodie f = new Foodie(desk); Cooker c = new Cooker(desk); f.start(); c.start(); }}
2.4阻塞队列基本使用
- 阻塞队列继承结构
-
常见BlockingQueue:
ArrayBlockingQueue: 底层是数组,有界
LinkedBlockingQueue: 底层是链表,无界.但不是真正的无界,最大为int的最大值
-
BlockingQueue的核心方法:
put(anObject): 将参数放入队列,如果放不进去会阻塞
take(): 取出第一个数据,取不到会阻塞
-
代码示例
public class Demo02 { public static void main(String[] args) throws Exception { // 创建阻塞队列的对象,容量为 1 ArrayBlockingQueue<String> arrayBlockingQueue = new ArrayBlockingQueue<>(1); // 存储元素 arrayBlockingQueue.put("汉堡包"); // 取元素 System.out.println(arrayBlockingQueue.take()); System.out.println(arrayBlockingQueue.take()); // 取不到会阻塞 System.out.println("程序结束了"); }}
2.5阻塞队列实现等待唤醒机制
-
案例需求
-
生产者类(Cooker):实现Runnable接口,重写run()方法,设置线程任务
构造方法中接收一个阻塞队列对象
在run方法中循环向阻塞队列中添加包子
打印添加结果
-
消费者类(Foodie):实现Runnable接口,重写run()方法,设置线程任务
构造方法中接收一个阻塞队列对象
在run方法中循环获取阻塞队列中的包子
打印获取结果
-
测试类(Demo):里面有main方法,main方法中的代码步骤如下
创建阻塞队列对象
创建生产者线程和消费者线程对象,构造方法中传入阻塞队列对象
分别开启两个线程
-
-
代码实现
public class Cooker extends Thread { private ArrayBlockingQueue<String> bd; public Cooker(ArrayBlockingQueue<String> bd) { this.bd = bd; }// 生产者步骤:// 1,判断桌子上是否有汉堡包// 如果有就等待,如果没有才生产。// 2,把汉堡包放在桌子上。// 3,叫醒等待的消费者开吃。 @Override public void run() { while (true) { try { bd.put("汉堡包"); System.out.println("厨师放入一个汉堡包"); } catch (InterruptedException e) { e.printStackTrace(); } } }}public class Foodie extends Thread { private ArrayBlockingQueue<String> bd; public Foodie(ArrayBlockingQueue<String> bd) { this.bd = bd; } @Override public void run() {// 1,判断桌子上是否有汉堡包。// 2,如果没有就等待。// 3,如果有就开吃// 4,吃完之后,桌子上的汉堡包就没有了// 叫醒等待的生产者继续生产// 汉堡包的总数量减一 //套路: //1. while(true)死循环 //2. synchronized 锁,锁对象要唯一 //3. 判断,共享数据是否结束. 结束 //4. 判断,共享数据是否结束. 没有结束 while (true) { try { String take = bd.take(); System.out.println("吃货将" + take + "拿出来吃了"); } catch (InterruptedException e) { e.printStackTrace(); } } }}public class Demo { public static void main(String[] args) { ArrayBlockingQueue<String> bd = new ArrayBlockingQueue<>(1); Foodie f = new Foodie(bd); Cooker c = new Cooker(bd); f.start(); c.start(); }}
后记
👉👉💕💕美好的一天,到此结束,下次继续努力!欲知后续,请看下回分解,写作不易,感谢大家的支持!! 🌹🌹🌹
来源地址:https://blog.csdn.net/m0_59230408/article/details/132341399