文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python scrapy爬取苏州二手房交易数据

2022-06-02 22:39

关注

一、项目需求

使用Scrapy爬取链家网中苏州市二手房交易数据并保存于CSV文件中
要求:
房屋面积、总价和单价只需要具体的数字,不需要单位名称。
删除字段不全的房屋数据,如有的房屋朝向会显示“暂无数据”,应该剔除。
保存到CSV文件中的数据,字段要按照如下顺序排列:房屋名称,房屋户型,建筑面积,房屋朝向,装修情况,有无电梯,房屋总价,房屋单价,房屋产权。

二、项目分析

流程图

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

通过控制台发现所有房屋信息都在一个ul中其中每一个li里存储一个房屋的信息。

在这里插入图片描述

找了到需要的字段,这里以房屋名称为例,博主用linux截图,没法对图片进行标注,这一段就是最中间的“景山玫瑰园” 。
其他字段类似不再一一列举。
获取了需要的数据后发现没有电梯的配备情况,所以需要到详细页也就是点击后进入的页面,
点击

在这里插入图片描述

可以看到里面有下需要的信息。

在这里插入图片描述

抓取详细页url

在这里插入图片描述

进行详细页数据分析

在这里插入图片描述

找到相应的位置,进行抓取数据。

三、编写程序

创建项目,不说了。

1.编写item(数据存储)


import scrapy
class LianjiaHomeItem(scrapy.Item):
     name = scrapy.Field() # 名称
     type = scrapy.Field()  # 户型
     area = scrapy.Field()  # 面积
     direction = scrapy.Field()  #朝向
     fitment = scrapy.Field()  # 装修情况
     elevator = scrapy.Field()  # 有无电梯
     total_price = scrapy.Field()  # 总价
     unit_price = scrapy.Field()  # 单价

2.编写spider(数据抓取)


from scrapy import Request
from scrapy.spiders import Spider
from lianjia_home.items import LianjiaHomeItem

class HomeSpider(Spider):
    name = "home"
    current_page=1 #起始页

    def start_requests(self): #初始请求
        url="https://su.lianjia.com/ershoufang/"
        yield Request(url=url)

    def parse(self, response): #解析函数
        list_selctor=response.xpath("//li/div[@class='info clear']")
        for one_selector in list_selctor:
            try:
                #房屋名称
                name=one_selector.xpath("//div[@class='flood']/div[@class='positionInfo']/a/text()").extract_first()
                #其他信息
                other=one_selector.xpath("//div[@class='address']/div[@class='houseInfo']/text()").extract_first()
                other_list=other.split("|")
                type=other_list[0].strip(" ")#户型
                area = other_list[1].strip(" ") #面积
                direction=other_list[2].strip(" ") #朝向
                fitment=other_list[3].strip(" ") #装修
                price_list=one_selector.xpath("div[@class='priceInfo']//span/text()")
                # 总价
                total_price=price_list[0].extract()
                # 单价
                unit_price=price_list[1].extract()

                item=LianjiaHomeItem()
                item["name"]=name.strip(" ")
                item["type"]=type
                item["area"] = area
                item["direction"] = direction
                item["fitment"] = fitment
                item["total_price"] = total_price
                item["unit_price"] = unit_price

            #生成详细页
                url = one_selector.xpath("div[@class='title']/a/@href").extract_first()
                yield Request(url=url,
                              meta={"item":item}, #把item作为数据v传递
                              callback=self.property_parse) #爬取详细页
            except:
                print("error")

        #获取下一页
            self.current_page+=1
            if self.current_page<=100:
                next_url="https://su.lianjia.com/ershoufang/pg%d"%self.current_page
                yield Request(url=next_url)


    def property_parse(self,response):#详细页
        #配备电梯
        elevator=response.xpath("//div[@class='base']/div[@class='content']/ul/li[last()]/text()").extract_first()
        item=response.meta["item"]
        item["elevator"]=elevator
        yield item

3.编写pipelines(数据处理)


import re
from scrapy.exceptions import DropItem
class LianjiaHomePipeline:#数据的清洗
    def process_item(self, item, spider):
        #面积
        item["area"]=re.findall("\d+\.?\d*",item["area"])[0] #提取数字并存储
        #单价
        item["unit_price"] = re.findall("\d+\.?\d*", item["unit_price"])[0] #提取数字并存储

        #如果有不完全的数据,则抛弃
        if item["direction"] =="暂无数据":
            raise DropItem("无数据,抛弃:%s"%item)

        return item

class CSVPipeline(object):
    file=None
    index=0 #csv文件行数判断
    def open_spider(self,spider): #爬虫开始前,打开csv文件
        self.file=open("home.csv","a",encoding="utf=8")

    def process_item(self, item, spider):#按要求存储文件。
        if self.index ==0:
            column_name="name,type,area,direction,fitment,elevator,total_price,unit_price\n"
            self.file.write(column_name)#插入第一行的索引信息
            self.index=1

        home_str=item["name"]+","+item["type"]+","+item["area"]+","+item["direction"]+","+item["fitment"]+","+item["elevator"]+","+item["total_price"]+","+item["unit_price"]+"\n"
        self.file.write(home_str) #插入获取的信息

        return item

    def close_soider(self,spider):#爬虫结束后关闭csv
        self.file.close()

4.编写settings(爬虫设置)

这里只写下需要修改的地方


USER_AGENT = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.72 Safari/537.36'
#为装成浏览器
ROBOTSTXT_OBEY = False #不遵循robots协议
ITEM_PIPELINES = {
    'lianjia_home.pipelines.LianjiaHomePipeline': 300,
    #先进行数字提取
    'lianjia_home.pipelines.CSVPipeline': 400
    #在进行数据的储存
    #执行顺序由后边的数字决定
}

这些内容在settings有些是默认关闭的,把用来注释的 # 去掉即可开启。

5.编写start(代替命令行)


from scrapy import cmdline

cmdline.execute("scrapy crawl home" .split())

附上两张结果图。

在这里插入图片描述

在这里插入图片描述

总结

此次项目新增了简单的数据清洗,在整体的数据抓取上没有增加新的难度。

到此这篇关于Python scrapy爬取苏州二手房交易数据的文章就介绍到这了,更多相关scrapy爬取二手房交易数据内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯