文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python中怎么利用Dijkstra算法规划机器人路径

2023-06-20 19:49

关注

今天就跟大家聊聊有关python中怎么利用Dijkstra算法规划机器人路径,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

一、算法原理

python中怎么利用Dijkstra算法规划机器人路径

如图所示,Dijkstra算法要解决的是一个有向权重图中最短路径的寻找问题,图中红色节点1代表起始节点,蓝色节点6代表目标结点。箭头上的数字代表两个结点中的的距离,也就是模型中所谓的代价(cost)。

贪心算法需要设立两个集合,open_set(开集)和closed_set(闭集),然后根据以下程序进行操作:

注意open_set中的代价是可变的,而closed_set中的代价已经是最小的代价了,这也是为什么叫做open和close的原因。

至于为什么closed_set中的代价是最小的,是因为我们使用了贪心算法,既然已经把节点加入到了close中,那么初始点到close节点中的距离就比到open中的距离小了,无论如何也不可能找到比它更小的了。

二、程序代码

"""Grid based Dijkstra planningauthor: Atsushi Sakai(@Atsushi_twi)"""import matplotlib.pyplot as pltimport mathshow_animation = Trueclass Dijkstra:    def __init__(self, ox, oy, resolution, robot_radius):        """        Initialize map for a star planning        ox: x position list of Obstacles [m]        oy: y position list of Obstacles [m]        resolution: grid resolution [m]        rr: robot radius[m]        """        self.min_x = None        self.min_y = None        self.max_x = None        self.max_y = None        self.x_width = None        self.y_width = None        self.obstacle_map = None        self.resolution = resolution        self.robot_radius = robot_radius        self.calc_obstacle_map(ox, oy)        self.motion = self.get_motion_model()    class Node:        def __init__(self, x, y, cost, parent_index):            self.x = x  # index of grid            self.y = y  # index of grid            self.cost = cost            self.parent_index = parent_index  # index of previous Node        def __str__(self):            return str(self.x) + "," + str(self.y) + "," + str(                self.cost) + "," + str(self.parent_index)    def planning(self, sx, sy, gx, gy):        """        dijkstra path search        input:            s_x: start x position [m]            s_y: start y position [m]            gx: goal x position [m]            gx: goal x position [m]        output:            rx: x position list of the final path            ry: y position list of the final path        """        start_node = self.Node(self.calc_xy_index(sx, self.min_x),                               self.calc_xy_index(sy, self.min_y), 0.0, -1)        goal_node = self.Node(self.calc_xy_index(gx, self.min_x),                              self.calc_xy_index(gy, self.min_y), 0.0, -1)        open_set, closed_set = dict(), dict()        open_set[self.calc_index(start_node)] = start_node        while 1:            c_id = min(open_set, key=lambda o: open_set[o].cost)            current = open_set[c_id]            # show graph            if show_animation:  # pragma: no cover                plt.plot(self.calc_position(current.x, self.min_x),                         self.calc_position(current.y, self.min_y), "xc")                # for stopping simulation with the esc key.                plt.gcf().canvas.mpl_connect(                    'key_release_event',                    lambda event: [exit(0) if event.key == 'escape' else None])                if len(closed_set.keys()) % 10 == 0:                    plt.pause(0.001)            if current.x == goal_node.x and current.y == goal_node.y:                print("Find goal")                goal_node.parent_index = current.parent_index                goal_node.cost = current.cost                break            # Remove the item from the open set            del open_set[c_id]            # Add it to the closed set            closed_set[c_id] = current            # expand search grid based on motion model            for move_x, move_y, move_cost in self.motion:                node = self.Node(current.x + move_x,                                 current.y + move_y,                                 current.cost + move_cost, c_id)                n_id = self.calc_index(node)                if n_id in closed_set:                    continue                if not self.verify_node(node):                    continue                if n_id not in open_set:                    open_set[n_id] = node  # Discover a new node                else:                    if open_set[n_id].cost >= node.cost:                        # This path is the best until now. record it!                        open_set[n_id] = node        rx, ry = self.calc_final_path(goal_node, closed_set)        return rx, ry    def calc_final_path(self, goal_node, closed_set):        # generate final course        rx, ry = [self.calc_position(goal_node.x, self.min_x)], [            self.calc_position(goal_node.y, self.min_y)]        parent_index = goal_node.parent_index        while parent_index != -1:            n = closed_set[parent_index]            rx.append(self.calc_position(n.x, self.min_x))            ry.append(self.calc_position(n.y, self.min_y))            parent_index = n.parent_index        return rx, ry    def calc_position(self, index, minp):        pos = index * self.resolution + minp        return pos    def calc_xy_index(self, position, minp):        return round((position - minp) / self.resolution)    def calc_index(self, node):        return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)    def verify_node(self, node):        px = self.calc_position(node.x, self.min_x)        py = self.calc_position(node.y, self.min_y)        if px < self.min_x:            return False        if py < self.min_y:            return False        if px >= self.max_x:            return False        if py >= self.max_y:            return False        if self.obstacle_map[node.x][node.y]:            return False        return True    def calc_obstacle_map(self, ox, oy):        self.min_x = round(min(ox))        self.min_y = round(min(oy))        self.max_x = round(max(ox))        self.max_y = round(max(oy))        print("min_x:", self.min_x)        print("min_y:", self.min_y)        print("max_x:", self.max_x)        print("max_y:", self.max_y)        self.x_width = round((self.max_x - self.min_x) / self.resolution)        self.y_width = round((self.max_y - self.min_y) / self.resolution)        print("x_width:", self.x_width)        print("y_width:", self.y_width)        # obstacle map generation        self.obstacle_map = [[False for _ in range(self.y_width)]                             for _ in range(self.x_width)]        for ix in range(self.x_width):            x = self.calc_position(ix, self.min_x)            for iy in range(self.y_width):                y = self.calc_position(iy, self.min_y)                for iox, ioy in zip(ox, oy):                    d = math.hypot(iox - x, ioy - y)                    if d <= self.robot_radius:                        self.obstacle_map[ix][iy] = True                        break    @staticmethod    def get_motion_model():        # dx, dy, cost        motion = [[1, 0, 1],                  [0, 1, 1],                  [-1, 0, 1],                  [0, -1, 1],                  [-1, -1, math.sqrt(2)],                  [-1, 1, math.sqrt(2)],                  [1, -1, math.sqrt(2)],                  [1, 1, math.sqrt(2)]]        return motiondef main():    print(__file__ + " start!!")    # start and goal position    sx = -5.0  # [m]    sy = -5.0  # [m]    gx = 50.0  # [m]    gy = 50.0  # [m]    grid_size = 2.0  # [m]    robot_radius = 1.0  # [m]    # set obstacle positions    ox, oy = [], []    for i in range(-10, 60):        ox.append(i)        oy.append(-10.0)    for i in range(-10, 60):        ox.append(60.0)        oy.append(i)    for i in range(-10, 61):        ox.append(i)        oy.append(60.0)    for i in range(-10, 61):        ox.append(-10.0)        oy.append(i)    for i in range(-10, 40):        ox.append(20.0)        oy.append(i)    for i in range(0, 40):        ox.append(40.0)        oy.append(60.0 - i)    if show_animation:  # pragma: no cover        plt.plot(ox, oy, ".k")        plt.plot(sx, sy, "og")        plt.plot(gx, gy, "xb")        plt.grid(True)        plt.axis("equal")    dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)    rx, ry = dijkstra.planning(sx, sy, gx, gy)    if show_animation:  # pragma: no cover        plt.plot(rx, ry, "-r")        plt.pause(0.01)        plt.show()if __name__ == '__main__':    main()

三、运行结果

python中怎么利用Dijkstra算法规划机器人路径

四、 A*算法:Djikstra算法的改进

Dijkstra算法实际上是贪心搜索算法,算法复杂度为O( n 2 n^2 n2),为了减少无效搜索的次数,我们可以增加一个启发式函数(heuristic),比如搜索点到终点目标的距离,在选择open_set元素的时候,我们将cost变成cost+heuristic,就可以给出搜索的方向性,这样就可以减少南辕北辙的情况。我们可以run一下PythonRobotics中的Astar代码,得到以下结果:

python中怎么利用Dijkstra算法规划机器人路径

看完上述内容,你们对python中怎么利用Dijkstra算法规划机器人路径有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注编程网行业资讯频道,感谢大家的支持。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯