文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何分析Linux 下线程池的使用

2023-06-28 16:27

关注

这期内容当中小编将会给大家带来有关如何分析Linux 下线程池的使用,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

处理多线程的方式可以采用线程池,可以将“生产者”线程提出任务列表添加到“任务列表”,然后一些线程自动完成“任务队列”的任务。

多线程编程,创建一个线程,指定去完成某一个任务,等待线程的退出。虽然能够满足编程需求,但是当我们需要创建大量的线程的时候,在创建过程以及销毁线程的过程中可能会消耗大量的CPU.增加很大开销。如:文件夹的copy、WEB服务器的响应。

线程池就是用来解决类似于这样的一个问题的,可以降低频繁地创建和销毁线程所带来地开销。

线程池技术思路:一般采用预创建线程技术,也就是提前把需要用线程先创建一定数目。这些线程提前创建好了之后,“任务队列”里面假设没有任务,那么就让这些线程休眠,一旦有任务,就唤醒线程去执行任务,任务执行完了,也不需要去销毁线程,直到当你想退出或者是关机时,这个时候,那么你调用销毁线程池地函数去销毁线程。

线程完成任务之后不会销毁,而是自动地执行下一个任务。而且,当任务有很多,你可以有函数接口去增加线程数量,当任务较少时,你可以有函数接口去销毁部分线程。

如果,创建和销毁线程的时间对比执行任务的时间可以忽略不计,那么我们在这种情况下面也就没有必要用线程池。

“任务队列”是一个共享资源“互斥访问”

如何分析Linux 下线程池的使用

线程池本质上也是一个数据结构,需要一个结构体去描述它:

struct pthread_pool //线程池的实现 {  //一般会有如下成员   //互斥锁,用来保护这个“任务队列”  pthread_mutex_t lock; //互斥锁     //线程条件变量 表示“任务队列”是否有任务  pthread_cond_t cond; //条件变量    bool shutdown; //表示是否退出程序 bool:类型 false / true   //任务队列(链表),指向第一个需要指向的任务  //所有的线程都从任务链表中获取任务 "共享资源"  struct task * task_list;    //线程池中有多个线程,每一个线程都有tid, 需要一个数组去保存tid  pthread_t * tids; //malloc()     //线程池中正在服役的线程数,当前线程个数  unsigned int active_threads;    //线程池任务队列最大的任务数量  unsigned int max_waiting_tasks;    //线程池任务队列上当前有多少个任务  unsigned int cur_waiting_tasks;    //......  };  //任务队列(链表)上面的任务结点,只要能够描述好一个任务就可以了, //线程会不断地任务队列取任务 struct task  //任务结点  {  // 1. 任务结点表示的任务,“函数指针”指向任务要执行的函数(cp_file)  void*(* do_task)(void * arg);    //2. 指针,指向任务指向函数的参数(文件描述符)  void * arg;    //3. 任务结点类型的指针,指向下一个任务  struct task * next; };

线程池框架代码如下,功能自填:

操作线程池所需要的函数接口:pthread_pool.c 、pthread_pool.h

把“线程池”想象成一个外包公司,你需要去完成的就是操作线程池所提供的函数接口。

pthread_pool.c

#include "pthread_pool.h"    int init_pool(pthread_pool * pool , unsigned int threa_num) {  //初始化线程池的结构体    //初始化线程互斥锁  pthread_mutex_init(&pool->lock, NULL);    //初始化线程条件变量  pthread_cond_init(&pool->cond, NULL);   pool->shutdown = false ;// 不退出   pool->task_list = (struct task*)malloc(sizeof(struct task));   pool->tids = (pthread_t *)malloc(sizeof(pthread_t) * MAX_ACTIVE_THREADS);  if(pool->task_list == NULL || pool->tids == NULL)  {   perror("malloc memery error");   return -1;  }   pool->task_list->next = NULL;   //线程池中一开始初始化多少个线程来服役  pool->active_threads = threa_num;   //表示线程池中最多有多少个任务  pool->max_waiting_tasks = MAX_WAITING_TASKS;   //线程池中任务队列当前的任务数量  pool->cur_waiting_tasks = 0;   //创建thread_num个线程,并且让线程去执行任务调配函数,  //记录所有线程的tid  int i = 0;  for(i = 0; i tids)[i], NULL, routine, (void*)pool);   if(ret != 0)   {    perror("create thread error");    return -1;   }    printf("[%lu]:[%s] ===> tids[%d]:[%lu]",pthread_self(),    __FUNCTION__, i , pool->tids[i]);  }   return 0; }    void * routine(void * arg) {  //arg表示你的线程池的指针    while()  {   //获取线程互斥锁,lock       //当线程池没有结束的时候,不断地从线程池的任务队列取下结点   //去执行。      //释放线程互斥锁,unlock      //释放任务结点  } }    int destroy_pool(pthread_pool * pool) {  //释放所有空间 等待任务执行完毕(join)。  //唤醒所有线程  //利用join函数回收每一个线程资源。 }    int add_task(pthread_pool *pool,void*(* do_task)(void * arg), void*arg) {  //把第二个参数和第三个参数封装成struct task     //再把它添加到 pool->task 任务队列中去    //注意任务队列是一个共享资源    //假如任务后要唤醒等待的线程。 }  //如果任务多的时候,往线程池中添加线程  pthread_create int add_threads(pthread_pool * pool, unsigned int num); {  //新创建num个线程,让每一个线程去执行线程调配函数    //将每一个新创建的线程tid,添加到pool-> tids  }  //如果任务少的时候,减少线程池中线程的数量 pthread_cancel join int remove_threads(pthread_pool * pool, unsigned int num) {  //用pthread_cancel取消num个线程   //利用pthread_join函数去回收资源。 }
pthread_pool.h#ifndef __PTHREAD_POOL_H__ #define __PTHREAD_POOL_H__  //表示线程池中最多有多少个线程 #define MAX_ACTIVE_THREADS 20  //表示线程池中最多有多少个任务 #define MAX_WAITING_TASKS 1024  //任务队列(链表)上面的任务结点,只要能够描述好一个任务就可以了, //线程会不断地任务队列取任务 struct task  //任务结点  {  // 1. 任务结点表示的任务,“函数指针”指向任务要执行的函数(cp_file)  void*(* do_task)(void * arg);    //2. 指针,指向任务指向函数的参数(文件描述符)  void * arg;    //3. 任务结点类型的指针,指向下一个任务  struct task * next; };  struct pthread_pool //线程池的实现 {  //一般会有如下成员   //互斥锁,用来保护这个“任务队列”  pthread_mutex_t lock; //互斥锁     //线程条件变量 表示“任务队列”是否有任务  pthread_cond_t cond; //条件变量    bool shutdown; //表示是否退出程序 bool:类型 false / true   //任务队列(链表),指向第一个需要指向的任务  //所有的线程都从任务链表中获取任务 "共享资源"  struct task * task_list;    //线程池中有多个线程,每一个线程都有tid, 需要一个数组去保存tid  pthread_t * tids; //malloc()     //线程池中正在服役的线程数,当前线程个数  unsigned int active_threads;    //线程池任务队列最大的任务数量  unsigned int max_waiting_tasks;    //线程池任务队列上当前有多少个任务  unsigned int cur_waiting_tasks;    //......  };    int init_pool(pthread_pool * pool , unsigned int threa_num);    void * routine(void * arg);    int destroy_pool(pthread_pool * pool);    int add_task(pthread_pool *pool,void*(* do_task)(void * arg), void*arg);  //如果任务多的时候,往线程池中添加线程  pthread_create int add_threads(pthread_pool * pool, unsigned int num);   //如果任务少的时候,减少线程池中线程的数量 pthread_cancel join int remove_threads(pthread_pool * pool, unsigned int num);  #endif

上述就是小编为大家分享的如何分析Linux 下线程池的使用了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-人工智能
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯