文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Redis入门 - 数据类型:Stream详解

2017-07-13 20:00

关注

Redis入门 - 数据类型:Stream详解

Redis5.0 中还增加了一个数据类型Stream,它借鉴了Kafka的设计,是一个新的强大的支持多播的可持久化的消息队列。@pdai

为什么会设计Stream

Redis5.0 中还增加了一个数据结构Stream,从字面上看是流类型,但其实从功能上看,应该是Redis对消息队列(MQ,Message Queue)的完善实现。

用过Redis做消息队列的都了解,基于Reids的消息队列实现有很多种,例如:

为什么上面的结构无法满足广泛的MQ场景? 这里便引出一个核心的问题:如果我们期望设计一种数据结构来实现消息队列,最重要的就是要理解设计一个消息队列需要考虑什么?初步的我们很容易想到

其它还要考虑啥嗯?借助美团技术团队的一篇文章,消息队列设计精要 中的图

我们不妨看看Redis考虑了哪些设计

这也是我们需要理解Stream的点,但是结合上面的图,我们也应该理解Redis Stream也是一种超轻量MQ并没有完全实现消息队列所有设计要点,这决定着它适用的场景。

Stream详解

经过梳理总结,我认为从以下几个大的方面去理解Stream是比较合适的,总结如下:@pdai

Stream的结构

每个 Stream 都有唯一的名称,它就是 Redis 的 key,在我们首次使用 xadd 指令追加消息时自动创建。

上图解析:

此外我们还需要理解两点:

增删改查

消息队列相关命令:

# *号表示服务器自动生成ID,后面顺序跟着一堆key/value
127.0.0.1:6379> xadd codehole * name laoqian age 30  #  名字叫laoqian,年龄30岁
1527849609889-0  # 生成的消息ID
127.0.0.1:6379> xadd codehole * name xiaoyu age 29
1527849629172-0
127.0.0.1:6379> xadd codehole * name xiaoqian age 1
1527849637634-0
127.0.0.1:6379> xlen codehole
(integer) 3
127.0.0.1:6379> xrange codehole - +  # -表示最小值, +表示最大值
127.0.0.1:6379> xrange codehole - +
1) 1) 1527849609889-0
   1) 1) "name"
      1) "laoqian"
      2) "age"
      3) "30"
2) 1) 1527849629172-0
   1) 1) "name"
      1) "xiaoyu"
      2) "age"
      3) "29"
3) 1) 1527849637634-0
   1) 1) "name"
      1) "xiaoqian"
      2) "age"
      3) "1"
127.0.0.1:6379> xrange codehole 1527849629172-0 +  # 指定最小消息ID的列表
1) 1) 1527849629172-0
   2) 1) "name"
      2) "xiaoyu"
      3) "age"
      4) "29"
2) 1) 1527849637634-0
   2) 1) "name"
      2) "xiaoqian"
      3) "age"
      4) "1"
127.0.0.1:6379> xrange codehole - 1527849629172-0  # 指定最大消息ID的列表
1) 1) 1527849609889-0
   2) 1) "name"
      2) "laoqian"
      3) "age"
      4) "30"
2) 1) 1527849629172-0
   2) 1) "name"
      2) "xiaoyu"
      3) "age"
      4) "29"
127.0.0.1:6379> xdel codehole 1527849609889-0
(integer) 1
127.0.0.1:6379> xlen codehole  # 长度不受影响
(integer) 3
127.0.0.1:6379> xrange codehole - +  # 被删除的消息没了
1) 1) 1527849629172-0
   2) 1) "name"
      2) "xiaoyu"
      3) "age"
      4) "29"
2) 1) 1527849637634-0
   2) 1) "name"
      2) "xiaoqian"
      3) "age"
      4) "1"
127.0.0.1:6379> del codehole  # 删除整个Stream
(integer) 1

独立消费

我们可以在不定义消费组的情况下进行Stream消息的独立消费,当Stream没有新消息时,甚至可以阻塞等待。Redis设计了一个单独的消费指令xread,可以将Stream当成普通的消息队列(list)来使用。使用xread时,我们可以完全忽略消费组(Consumer Group)的存在,就好比Stream就是一个普通的列表(list)。

# 从Stream头部读取两条消息
127.0.0.1:6379> xread count 2 streams codehole 0-0
1) 1) "codehole"
   2) 1) 1) 1527851486781-0
         2) 1) "name"
            2) "laoqian"
            3) "age"
            4) "30"
      2) 1) 1527851493405-0
         2) 1) "name"
            2) "yurui"
            3) "age"
            4) "29"
# 从Stream尾部读取一条消息,毫无疑问,这里不会返回任何消息
127.0.0.1:6379> xread count 1 streams codehole $
(nil)
# 从尾部阻塞等待新消息到来,下面的指令会堵住,直到新消息到来
127.0.0.1:6379> xread block 0 count 1 streams codehole $
# 我们从新打开一个窗口,在这个窗口往Stream里塞消息
127.0.0.1:6379> xadd codehole * name youming age 60
1527852774092-0
# 再切换到前面的窗口,我们可以看到阻塞解除了,返回了新的消息内容
# 而且还显示了一个等待时间,这里我们等待了93s
127.0.0.1:6379> xread block 0 count 1 streams codehole $
1) 1) "codehole"
   2) 1) 1) 1527852774092-0
         2) 1) "name"
            2) "youming"
            3) "age"
            4) "60"
(93.11s)

客户端如果想要使用xread进行顺序消费,一定要记住当前消费到哪里了,也就是返回的消息ID。下次继续调用xread时,将上次返回的最后一个消息ID作为参数传递进去,就可以继续消费后续的消息。

block 0表示永远阻塞,直到消息到来,block 1000表示阻塞1s,如果1s内没有任何消息到来,就返回nil

127.0.0.1:6379> xread block 1000 count 1 streams codehole $
(nil)
(1.07s)

消费组消费

Stream通过xgroup create指令创建消费组(Consumer Group),需要传递起始消息ID参数用来初始化last_delivered_id变量。

127.0.0.1:6379> xgroup create codehole cg1 0-0  #  表示从头开始消费
OK
# $表示从尾部开始消费,只接受新消息,当前Stream消息会全部忽略
127.0.0.1:6379> xgroup create codehole cg2 $
OK
127.0.0.1:6379> xinfo stream codehole  # 获取Stream信息
 1) length
 2) (integer) 3  # 共3个消息
 3) radix-tree-keys
 4) (integer) 1
 5) radix-tree-nodes
 6) (integer) 2
 7) groups
 8) (integer) 2  # 两个消费组
 9) first-entry  # 第一个消息
10) 1) 1527851486781-0
    2) 1) "name"
       2) "laoqian"
       3) "age"
       4) "30"
11) last-entry  # 最后一个消息
12) 1) 1527851498956-0
    2) 1) "name"
       2) "xiaoqian"
       3) "age"
       4) "1"
127.0.0.1:6379> xinfo groups codehole  # 获取Stream的消费组信息
1) 1) name
   2) "cg1"
   3) consumers
   4) (integer) 0  # 该消费组还没有消费者
   5) pending
   6) (integer) 0  # 该消费组没有正在处理的消息
2) 1) name
   2) "cg2"
   3) consumers  # 该消费组还没有消费者
   4) (integer) 0
   5) pending
   6) (integer) 0  # 该消费组没有正在处理的消息

Stream提供了xreadgroup指令可以进行消费组的组内消费,需要提供消费组名称、消费者名称和起始消息ID。它同xread一样,也可以阻塞等待新消息。读到新消息后,对应的消息ID就会进入消费者的PEL(正在处理的消息)结构里,客户端处理完毕后使用xack指令通知服务器,本条消息已经处理完毕,该消息ID就会从PEL中移除。

# >号表示从当前消费组的last_delivered_id后面开始读
# 每当消费者读取一条消息,last_delivered_id变量就会前进
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1 streams codehole >
1) 1) "codehole"
   2) 1) 1) 1527851486781-0
         2) 1) "name"
            2) "laoqian"
            3) "age"
            4) "30"
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1 streams codehole >
1) 1) "codehole"
   2) 1) 1) 1527851493405-0
         2) 1) "name"
            2) "yurui"
            3) "age"
            4) "29"
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 2 streams codehole >
1) 1) "codehole"
   2) 1) 1) 1527851498956-0
         2) 1) "name"
            2) "xiaoqian"
            3) "age"
            4) "1"
      2) 1) 1527852774092-0
         2) 1) "name"
            2) "youming"
            3) "age"
            4) "60"
# 再继续读取,就没有新消息了
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1 streams codehole >
(nil)
# 那就阻塞等待吧
127.0.0.1:6379> xreadgroup GROUP cg1 c1 block 0 count 1 streams codehole >
# 开启另一个窗口,往里塞消息
127.0.0.1:6379> xadd codehole * name lanying age 61
1527854062442-0
# 回到前一个窗口,发现阻塞解除,收到新消息了
127.0.0.1:6379> xreadgroup GROUP cg1 c1 block 0 count 1 streams codehole >
1) 1) "codehole"
   2) 1) 1) 1527854062442-0
         2) 1) "name"
            2) "lanying"
            3) "age"
            4) "61"
(36.54s)
127.0.0.1:6379> xinfo groups codehole  # 观察消费组信息
1) 1) name
   2) "cg1"
   3) consumers
   4) (integer) 1  # 一个消费者
   5) pending
   6) (integer) 5  # 共5条正在处理的信息还有没有ack
2) 1) name
   2) "cg2"
   3) consumers
   4) (integer) 0  # 消费组cg2没有任何变化,因为前面我们一直在操纵cg1
   5) pending
   6) (integer) 0
# 如果同一个消费组有多个消费者,我们可以通过xinfo consumers指令观察每个消费者的状态
127.0.0.1:6379> xinfo consumers codehole cg1  # 目前还有1个消费者
1) 1) name
   2) "c1"
   3) pending
   4) (integer) 5  # 共5条待处理消息
   5) idle
   6) (integer) 418715  # 空闲了多长时间ms没有读取消息了
# 接下来我们ack一条消息
127.0.0.1:6379> xack codehole cg1 1527851486781-0
(integer) 1
127.0.0.1:6379> xinfo consumers codehole cg1
1) 1) name
   2) "c1"
   3) pending
   4) (integer) 4  # 变成了5条
   5) idle
   6) (integer) 668504
# 下面ack所有消息
127.0.0.1:6379> xack codehole cg1 1527851493405-0 1527851498956-0 1527852774092-0 1527854062442-0
(integer) 4
127.0.0.1:6379> xinfo consumers codehole cg1
1) 1) name
   2) "c1"
   3) pending
   4) (integer) 0  # pel空了
   5) idle
   6) (integer) 745505

信息监控

Stream提供了XINFO来实现对服务器信息的监控,可以查询:

127.0.0.1:6379> Xinfo stream mq
 1) "length"
 2) (integer) 7
 3) "radix-tree-keys"
 4) (integer) 1
 5) "radix-tree-nodes"
 6) (integer) 2
 7) "groups"
 8) (integer) 1
 9) "last-generated-id"
10) "1553585533795-9"
11) "first-entry"
12) 1) "1553585533795-3"
    2) 1) "msg"
       2) "4"
13) "last-entry"
14) 1) "1553585533795-9"
    2) 1) "msg"
       2) "10"
127.0.0.1:6379> Xinfo groups mq
1) 1) "name"
   2) "mqGroup"
   3) "consumers"
   4) (integer) 3
   5) "pending"
   6) (integer) 3
   7) "last-delivered-id"
   8) "1553585533795-4"
127.0.0.1:6379> XINFO CONSUMERS mq mqGroup
1) 1) "name"
   2) "consumerA"
   3) "pending"
   4) (integer) 1
   5) "idle"
   6) (integer) 18949894
2) 1) "name"
   2) "consumerB"
   3) "pending"
   4) (integer) 1
   5) "idle"
   6) (integer) 3092719
3) 1) "name"
   2) "consumerC"
   3) "pending"
   4) (integer) 1
   5) "idle"
   6) (integer) 23683256

至此,消息队列的操作说明大体结束!

更深入理解

我们结合MQ中常见问题,看Redis是如何解决的,来进一步理解Redis。

Stream用在什么样场景

可用作时通信等,大数据分析,异地数据备份等

客户端可以平滑扩展,提高处理能力

消息ID的设计是否考虑了时间回拨的问题?

在 分布式算法 - ID算法设计中, 一个常见的问题就是时间回拨问题,那么Redis的消息ID设计中是否考虑到这个问题呢?

XADD生成的1553439850328-0,就是Redis生成的消息ID,由两部分组成:时间戳-序号。时间戳是毫秒级单位,是生成消息的Redis服务器时间,它是个64位整型(int64)。序号是在这个毫秒时间点内的消息序号,它也是个64位整型。

可以通过multi批处理,来验证序号的递增:

127.0.0.1:6379> MULTI
OK
127.0.0.1:6379> XADD memberMessage * msg one
QUEUED
127.0.0.1:6379> XADD memberMessage * msg two
QUEUED
127.0.0.1:6379> XADD memberMessage * msg three
QUEUED
127.0.0.1:6379> XADD memberMessage * msg four
QUEUED
127.0.0.1:6379> XADD memberMessage * msg five
QUEUED
127.0.0.1:6379> EXEC
1) "1553441006884-0"
2) "1553441006884-1"
3) "1553441006884-2"
4) "1553441006884-3"
5) "1553441006884-4"

由于一个redis命令的执行很快,所以可以看到在同一时间戳内,是通过序号递增来表示消息的。

为了保证消息是有序的,因此Redis生成的ID是单调递增有序的。由于ID中包含时间戳部分,为了避免服务器时间错误而带来的问题(例如服务器时间延后了),Redis的每个Stream类型数据都维护一个latest_generated_id属性,用于记录最后一个消息的ID。若发现当前时间戳退后(小于latest_generated_id所记录的),则采用时间戳不变而序号递增的方案来作为新消息ID(这也是序号为什么使用int64的原因,保证有足够多的的序号),从而保证ID的单调递增性质。

强烈建议使用Redis的方案生成消息ID,因为这种时间戳+序号的单调递增的ID方案,几乎可以满足你全部的需求。但同时,记住ID是支持自定义的,别忘了!

消费者崩溃带来的会不会消息丢失问题?

为了解决组内消息读取但处理期间消费者崩溃带来的消息丢失问题,STREAM 设计了 Pending 列表,用于记录读取但并未处理完毕的消息。命令XPENDIING 用来获消费组或消费内消费者的未处理完毕的消息。演示如下:

127.0.0.1:6379> XPENDING mq mqGroup # mpGroup的Pending情况
1) (integer) 5 # 5个已读取但未处理的消息
2) "1553585533795-0" # 起始ID
3) "1553585533795-4" # 结束ID
4) 1) 1) "consumerA" # 消费者A有3个
      2) "3"
   2) 1) "consumerB" # 消费者B有1个
      2) "1"
   3) 1) "consumerC" # 消费者C有1个
      2) "1"

127.0.0.1:6379> XPENDING mq mqGroup - + 10 # 使用 start end count 选项可以获取详细信息
1) 1) "1553585533795-0" # 消息ID
   2) "consumerA" # 消费者
   3) (integer) 1654355 # 从读取到现在经历了1654355ms,IDLE
   4) (integer) 5 # 消息被读取了5次,delivery counter
2) 1) "1553585533795-1"
   2) "consumerA"
   3) (integer) 1654355
   4) (integer) 4
# 共5个,余下3个省略 ...

127.0.0.1:6379> XPENDING mq mqGroup - + 10 consumerA # 在加上消费者参数,获取具体某个消费者的Pending列表
1) 1) "1553585533795-0"
   2) "consumerA"
   3) (integer) 1641083
   4) (integer) 5
# 共3个,余下2个省略 ...

每个Pending的消息有4个属性:

上面的结果我们可以看到,我们之前读取的消息,都被记录在Pending列表中,说明全部读到的消息都没有处理,仅仅是读取了。那如何表示消费者处理完毕了消息呢?使用命令 XACK 完成告知消息处理完成,演示如下:

127.0.0.1:6379> XACK mq mqGroup 1553585533795-0 # 通知消息处理结束,用消息ID标识
(integer) 1

127.0.0.1:6379> XPENDING mq mqGroup # 再次查看Pending列表
1) (integer) 4 # 已读取但未处理的消息已经变为4个
2) "1553585533795-1"
3) "1553585533795-4"
4) 1) 1) "consumerA" # 消费者A,还有2个消息处理
      2) "2"
   2) 1) "consumerB"
      2) "1"
   3) 1) "consumerC"
      2) "1"
127.0.0.1:6379>

有了这样一个Pending机制,就意味着在某个消费者读取消息但未处理后,消息是不会丢失的。等待消费者再次上线后,可以读取该Pending列表,就可以继续处理该消息了,保证消息的有序和不丢失。

消费者彻底宕机后如何转移给其它消费者处理?

还有一个问题,就是若某个消费者宕机之后,没有办法再上线了,那么就需要将该消费者Pending的消息,转义给其他的消费者处理,就是消息转移。

消息转移的操作时将某个消息转移到自己的Pending列表中。使用语法XCLAIM来实现,需要设置组、转移的目标消费者和消息ID,同时需要提供IDLE(已被读取时长),只有超过这个时长,才能被转移。演示如下:

# 当前属于消费者A的消息1553585533795-1,已经15907,787ms未处理了
127.0.0.1:6379> XPENDING mq mqGroup - + 10
1) 1) "1553585533795-1"
   2) "consumerA"
   3) (integer) 15907787
   4) (integer) 4

# 转移超过3600s的消息1553585533795-1到消费者B的Pending列表
127.0.0.1:6379> XCLAIM mq mqGroup consumerB 3600000 1553585533795-1
1) 1) "1553585533795-1"
   2) 1) "msg"
      2) "2"

# 消息1553585533795-1已经转移到消费者B的Pending中。
127.0.0.1:6379> XPENDING mq mqGroup - + 10
1) 1) "1553585533795-1"
   2) "consumerB"
   3) (integer) 84404 # 注意IDLE,被重置了
   4) (integer) 5 # 注意,读取次数也累加了1次

以上代码,完成了一次消息转移。转移除了要指定ID外,还需要指定IDLE,保证是长时间未处理的才被转移。被转移的消息的IDLE会被重置,用以保证不会被重复转移,以为可能会出现将过期的消息同时转移给多个消费者的并发操作,设置了IDLE,则可以避免后面的转移不会成功,因为IDLE不满足条件。例如下面的连续两条转移,第二条不会成功。

127.0.0.1:6379> XCLAIM mq mqGroup consumerB 3600000 1553585533795-1
127.0.0.1:6379> XCLAIM mq mqGroup consumerC 3600000 1553585533795-1

这就是消息转移。至此我们使用了一个Pending消息的ID,所属消费者和IDLE的属性,还有一个属性就是消息被读取次数,delivery counter,该属性的作用由于统计消息被读取的次数,包括被转移也算。这个属性主要用在判定是否为错误数据上。

坏消息问题,Dead Letter,死信问题

正如上面所说,如果某个消息,不能被消费者处理,也就是不能被XACK,这是要长时间处于Pending列表中,即使被反复的转移给各个消费者也是如此。此时该消息的delivery counter就会累加(上一节的例子可以看到),当累加到某个我们预设的临界值时,我们就认为是坏消息(也叫死信,DeadLetter,无法投递的消息),由于有了判定条件,我们将坏消息处理掉即可,删除即可。删除一个消息,使用XDEL语法,演示如下:

# 删除队列中的消息
127.0.0.1:6379> XDEL mq 1553585533795-1
(integer) 1
# 查看队列中再无此消息
127.0.0.1:6379> XRANGE mq - +
1) 1) "1553585533795-0"
   2) 1) "msg"
      2) "1"
2) 1) "1553585533795-2"
   2) 1) "msg"
      2) "3"

注意本例中,并没有删除Pending中的消息因此你查看Pending,消息还会在。可以执行XACK标识其处理完毕!

参考文章

本文主要梳理总结自:

知识体系

知识体系

相关文章

首先,我们通过学习Redis的概念基础,了解它适用的场景。

其次,这些适用场景都是基于Redis支持的数据类型的,所以我们需要学习它支持的数据类型;同时在redis优化中还需要对底层数据结构了解,所以也需要了解一些底层数据结构的设计和实现。

再者,需要学习Redis支持的核心功能,包括持久化,消息,事务,高可用;高可用方面包括,主从,哨兵等;高可拓展方面,比如 分片机制等。

最后,就是具体的实践以及实践中遇到的问题和解决方法了:在不同版本中有不同特性,所以还需要了解版本;以及性能优化,大厂实践等。

学习资料

本篇文章由一文多发平台ArtiPub自动发布

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯