文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python+OpenCV绘制灰度直方图详解

2024-04-02 19:55

关注

1.直方图的概念

图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。

图像灰度直方图:

一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征。图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少。图像的灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率

归一化直方图:

通常会将纵坐标归一化到[0,1]区间内,也就是将灰度级出现的频率(像素个数)除以图像中像素的总数。灰度直方图的计算公式如下:

其中,rk是像素的灰度级,nk是具有灰度rk的像素的个数,MN是图像中总的像素个数。

代码

import cv2 as cv
import numpy as np
 
from matplotlib import pyplot as plt
#%matplotlib inline
 
def plot_demo(image):
    plt.hist(image.ravel(), 256, [0, 256]) #image.ravel()#ravel函数功能是将多维数组降为一维数组,统计各个bin的频次,256:bin的个数,[0, 256]:范围
    plt.show("直方图") #和OpenCV中的想要的直方图不同
"""
画灰度图直方图:
绘图都可以调用matplotlib.pyplot库来进行,其中的hist函数可以直接绘制直方图。
plt.hist(arr, bins=50, normed=1, facecolor='green', alpha=0.75)
hist的参数非常多,但常用的就这五个,只有第一个是必须的,后面四个可选
arr: 需要计算直方图的一维数组
bins: 直方图的柱数,可选项,默认为10
normed: 是否将得到的直方图向量归一化。默认为0
range参数表示箱子的下限和上限。即横坐标显示的范围,范围之外的将被舍弃
"""
 
def image_hist(image):
    color = ('blue', 'green', 'red')  #图像三通道
    for i, color in enumerate(color):
        hist = cv.calcHist([image], [i], None, [256], [0, 256]) #绘制各个通道的直方图
        plt.plot(hist, color=color) #定义线的颜色
        plt.xlim([0, 256]) #x轴的范围
    plt.show()
"""
calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) 
images参数表示输入图像,传入时应该用中括号[ ]括起来
channels参数表示传入图像的通道,如果是灰度图像,那就不用说了,只有一个通道,值为0,
如果是彩色图像(有3个通道),那么值为0,1,2,中选择一个,对应着BGR各个通道。这个值也得用[ ]传入。
mask参数表示掩膜图像。如果统计整幅图,那么为None。
主要是如果要统计部分图的直方图,就得构造相应的掩膜来计算。
histSize参数表示灰度级的个数,需要中括号,比如[256]
ranges参数表示像素值的范围,通常[0,256]。此外,假如channels为[0,1],ranges为[0,256,0,180],
则代表0通道范围是0-256,1通道范围0-180。
hist参数表示计算出来的直方图。
"""
 
 
src = cv.imread("F:/images/lena.png")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
plot_demo(src)
image_hist(src)
cv.waitKey(0)
 
cv.destroyAllWindows()

原图

二维直返图

RGB直方图

到此这篇关于Python+OpenCV绘制灰度直方图详解的文章就介绍到这了,更多相关Python OpenCV灰度直方图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯