Bootstrap方法是一种统计学上的重采样方法,用来估计统计量的抽样分布和标准误。它通过从原始样本中有放回地抽取多个子样本,并在每个子样本上进行统计分析,从而得到一系列的统计量估计值。这些估计值可以用来计算统计量的抽样分布和标准误,从而进行假设检验、置信区间估计等统计推断。Bootstrap方法的主要优点是不需要对总体分布做出任何假设,能够灵活地应用于各种复杂的统计问题。
短信预约-IT技能 免费直播动态提醒
短信预约提醒成功
Bootstrap方法是一种统计学上的重采样方法,用来估计统计量的抽样分布和标准误。它通过从原始样本中有放回地抽取多个子样本,并在每个子样本上进行统计分析,从而得到一系列的统计量估计值。这些估计值可以用来计算统计量的抽样分布和标准误,从而进行假设检验、置信区间估计等统计推断。Bootstrap方法的主要优点是不需要对总体分布做出任何假设,能够灵活地应用于各种复杂的统计问题。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
193.9 KB下载数265
191.63 KB下载数245
143.91 KB下载数1148
183.71 KB下载数642
644.84 KB下载数2756