文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

numpy产生随机数的几种方法

2023-02-10 12:01

关注

在矩阵应用的过程中,经常需要使用随机数,那么怎么使用numpy 产生随机数呢 ,为此专门做一个总结。

random模块用于生成随机数,下面是一些常用的函数用法:
numpy.random.seed(n) 其中n为任意指定

当我们设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数

numpy.random.seed(0)

np.random.seed(0)
a = np.random.rand(4)  
a
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])

主要介绍了生成符合均匀分布,正态分布等数组和随机选取数以及打乱数组顺序的方法。

1.np.random.rand 生成一个0到1之间的均匀分布

import numpy as np
a = np.random.rand(2,3,4)
print(a,a.shape)

[[[0.18000344 0.03724064 0.15040061 0.93007827]
  [0.59423019 0.35439936 0.49193457 0.37633185]
  [0.83924196 0.4908405  0.49387427 0.98718216]]

 [[0.20072849 0.90163245 0.36710883 0.56668257]
  [0.61402791 0.46602958 0.56086072 0.83099671]
  [0.85196098 0.62774727 0.62826083 0.41739078]]] (2, 3, 4)

2.np.random.randn 返回一个符合标准正态分布的数组。

a = np.random.randn(2,3,4) 
print(a,a.shape)

[[[ 0.32062268  0.08867553 -0.83741647 -0.21917891]
  [-0.06516898 -1.17123767  2.2403833  -0.77741757]
  [ 0.33532261  0.27309929  1.07279005  0.79952468]]

 [[ 0.18503166  0.90777579 -1.52837098 -1.23783753]
  [ 0.9327577   1.61876194  0.52191996  0.53451075]
  [-1.05485337  1.01472352  0.19376936  0.00278223]]] (2, 3, 4)

3.np.random.randint返回一定范围的一维或者多维整数

numpy.random.randint(low, high=None, size=None, dtype=’l’)

返回随机整数,范围区间为[low,high),包含low,不包含high

size为数组维度,元组形式,如(2,3)#2行3列

high没有填写时,默认生成随机数的范围是[0,low)

dtype指定数据类型,默认int

a = np.random.randint(low=6,high=10,size=(2,3,4),dtype='int')
print(a,a.shape)

[[[8 8 7 8]
  [8 8 6 9]
  [9 6 7 7]]

 [[7 7 9 8]
  [9 6 6 7]
  [8 9 7 7]]] (2, 3, 4)

4.np.random.choice从给定的一维数组中随机选择数生成随机数

numpy.random.choice(a, size=None, replace=True, p=None)

a为一维数组类似数据或整数;size为数组维度;p为数组中的数据出现的概率

a为整数时,对应的一维数组为np.arange(a)

a = np.random.choice(a = [3,5,6],size=(2,3,4),replace=True,p=[0.1,0.5,0.4])
print(a,a.shape)

[[[5 6 3 5]
  [6 5 5 5]
  [6 5 6 6]]

 [[5 5 5 3]
  [6 5 6 6]
  [5 6 5 6]]] (2, 3, 4)

5.np.random.normal(loc=0.0, scale=1.0, size=None),生成符合指定分布的正态分布。

a = np.random.normal(loc=4,scale=6,size=(2,3,4))
print(a)

[[[13.19667529 12.81615262  4.92968455  6.26897512]
  [-1.32671449 -7.88477881  1.9125271   4.93809381]
  [11.38174408 11.21427909  1.6760391   2.1861835 ]]

 [[-2.29131779 -4.52010762 -6.23762114 15.70465237]
  [ 0.94208691  1.37155419 -3.51677216  8.66494213]
  [-5.68338709  2.72355832 -1.37279937  6.32141499]]]

6.np.random.random(size=None),生成符合0到1的均匀分布数组。

a = np.random.random((2,3,4))
print(a)

[[[0.19658236 0.36872517 0.82099323 0.09710128]
  [0.83794491 0.09609841 0.97645947 0.4686512 ]
  [0.97676109 0.60484552 0.73926358 0.03918779]]

 [[0.28280696 0.12019656 0.2961402  0.11872772]
  [0.31798318 0.41426299 0.0641475  0.69247212]
  [0.56660145 0.26538949 0.52324805 0.09394051]]]

7. np.random.ranf(size=None),生成符合0到1的均匀分布数组。

a = np.random.ranf((10))
a
array([0.82894003, 0.00469548, 0.67781654, 0.27000797, 0.73519402,
       0.96218855, 0.24875314, 0.57615733, 0.59204193, 0.57225191])

8.np.random.uniform(low=0.0, high=1.0, size=None),生成符合指定均匀分布的数组

g=np.random.uniform(-1,1,10)#指定均匀分布
print(g)

[ 0.07315842  0.79334259  0.98067789 -0.56620603  0.32615641 -0.47335525
 -0.958698    0.51675731 -0.3599657  -0.23307221]

9.np.random.shuffle(x),随机打乱数组顺序

a = np.arange(10)
np.random.shuffle(a)
print(a)

[6 3 4 9 0 8 1 5 2 7]

10. 产生其他分布的函数

到此这篇关于numpy 产生随机数的几种方法的文章就介绍到这了,更多相关numpy 产生随机数内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯