一、序言
在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量。当数据量继续增长时,数据的查询性能
即使有索引的帮助下也不尽如意,这时可以引入数据分库分表
技术。
本文将基于SpringBoot
+MybatisPlus
+Sharding-JDBC
+Mysql
实现企业级分库分表。
1、组件及版本选择
- SpringBoot 2.6.x
- MybatisPlus 3.5.0
- Sharding-JDBC 4.1.1
- Mysql 5.7.35
2、预期目标
- 使用上述组件实现分库分表,简化起见只讨论分表技术
- 完成分表后的逻辑表与物理表间的增删查改
- 引入逻辑删除和使用MybatisPlus内置分页技术
完整项目源码访问地址。
二、代码实现
为了简化分表复杂性,专注于分表整体实现,简化分表逻辑:按照UserId
的奇偶属性分别进行分表。以订单表这一典型场景为例,一般来说有关订单表,通常具有如下共性行为:
- 创建订单记录
- 查询XX用户的订单列表
- 查询XX用户的订单列表(分页)
- 查询XX订单详情
- 修改订单状态
- 删除订单(逻辑删除)
接下来通过代码实现上述目标。
(一)素材准备
1、实体类
@Data
@TableName("bu_order")
public class Order {
@TableId
private Long orderId;
private Integer orderType;
private Long userId;
private Double amount;
private Integer orderStatus;
@TableLogic
@JsonIgnore
private Boolean deleted;
}
2、Mapper类
@Mapper
public interface OrderMapper extends BaseMapper<Order> {
}
3、全局配置文件
spring:
config:
use-legacy-processing: true
shardingsphere:
datasource:
ds1:
driver-class-name: com.mysql.cj.jdbc.Driver
type: com.alibaba.druid.pool.DruidDataSource
url: jdbc:mysql://127.0.0.1:3306/sharding-jdbc2?serverTimezone=UTC
username: root
password: 123456
names: ds1
props:
sql:
show: true
sharding:
tables:
bu_order:
actual-data-nodes: ds1.bu_order_$->{0..1}
key-generator:
column: order_id
type: SNOWFLAKE
table-strategy:
inline:
algorithm-expression: bu_order_${user_id%2}
sharding-column: user_id
(二)增删查改
1、保存数据
由于依据主键的奇偶属性对原表分表,分表后每张表的数据量是分表前的二分之一。根据需要也可以自定义分表数量(比如10张),新分表后的数据量是不分表前的十分之一。
@Test
public void addOrders() {
for (long i = 1; i <= 10; i++) {
Order order = new Order();
order.setOrderId(i);
order.setOrderType(RandomUtil.randomEle(Arrays.asList(1, 2)));
order.setUserId(RandomUtil.randomEle(Arrays.asList(101L, 102L, 103L)));
order.setAmount(1000.0 * i);
orderMapper.insert(order);
}
}
2、查询列表数据
查询指定用户的订单列表。
@GetMapping("/list")
public AjaxResult list(Order order) {
LambdaQueryWrapper<Order> wrapper = Wrappers.lambdaQuery(order);
return AjaxResult.success(orderMapper.selectList(wrapper));
}
3、分页查询数据
分页查询指定用户的订单列表
@GetMapping("/page")
public AjaxResult page(Page<Order> page, Order order) {
return AjaxResult.success(orderMapper.selectPage(page, Wrappers.lambdaQuery(order)));
}
4、查询详情
通过订单ID查询订单详情。
@GetMapping("/detail/{orderId}")
public AjaxResult detail(@PathVariable Long orderId) {
return AjaxResult.success(orderMapper.selectById(orderId));
}
5、删除数据
通过订单ID删除订单(逻辑删除)
@DeleteMapping("/delete/{orderId}")
public AjaxResult delete(@PathVariable Long orderId) {
return AjaxResult.success(orderMapper.deleteById(orderId));
}
6、修改数据
修改数据一般涉及部分列,比如修改订单表的订单状态等。
@PutMapping("/edit")
public AjaxResult edit(@RequestBody Order order) {
return AjaxResult.success(orderMapper.updateById(order));
}
三、理论分析
1、选择分片列
选择分片列是经过精心对比后确定的,对于订单类场景,需要频繁以用户ID为查询条件筛选数据,因此将同一个用户的订单数据存放在一起有利于提高查询效率。
2、扩容
当分表后的表数据快速增长,可以预见即将达到瓶颈时,需要对分表进行扩容,扩容以2倍
的速率进行,扩容期间需要迁移数据,工作量相对可控。
到此这篇关于SpringBoot+MybatisPlus+Mysql+Sharding-JDBC分库分表 的文章就介绍到这了,更多相关SpringBoot分库分表 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!