文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

SpringBoot+MybatisPlus+Mysql+Sharding-JDBC分库分表

2024-04-02 19:55

关注

一、序言

在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量。当数据量继续增长时,数据的查询性能即使有索引的帮助下也不尽如意,这时可以引入数据分库分表技术。

本文将基于SpringBoot+MybatisPlus+Sharding-JDBC+Mysql实现企业级分库分表。

1、组件及版本选择

2、预期目标

完整项目源码访问地址。

二、代码实现

为了简化分表复杂性,专注于分表整体实现,简化分表逻辑:按照UserId的奇偶属性分别进行分表。以订单表这一典型场景为例,一般来说有关订单表,通常具有如下共性行为:

接下来通过代码实现上述目标。

(一)素材准备

1、实体类

@Data
@TableName("bu_order")
public class Order {
    @TableId
    private Long orderId;
    private Integer orderType;
    private Long userId;
    private Double amount;
    private Integer orderStatus;
    @TableLogic
    @JsonIgnore
    private Boolean deleted;
}

2、Mapper类

@Mapper
public interface OrderMapper extends BaseMapper<Order> {
}

3、全局配置文件

spring:
  config:
    use-legacy-processing: true
  shardingsphere:
    datasource:
      ds1:
        driver-class-name: com.mysql.cj.jdbc.Driver
        type: com.alibaba.druid.pool.DruidDataSource
        url: jdbc:mysql://127.0.0.1:3306/sharding-jdbc2?serverTimezone=UTC
        username: root
        password: 123456
      names: ds1
    props:
      sql:
        show: true
    sharding:
      tables:
        bu_order:
          actual-data-nodes: ds1.bu_order_$->{0..1}
          key-generator:
            column: order_id
            type: SNOWFLAKE
          table-strategy:
            inline:
              algorithm-expression: bu_order_${user_id%2}
              sharding-column: user_id

(二)增删查改

1、保存数据

由于依据主键的奇偶属性对原表分表,分表后每张表的数据量是分表前的二分之一。根据需要也可以自定义分表数量(比如10张),新分表后的数据量是不分表前的十分之一。

@Test
public void addOrders() {
    for (long i = 1; i <= 10; i++) {
        Order order = new Order();
        order.setOrderId(i);
        order.setOrderType(RandomUtil.randomEle(Arrays.asList(1, 2)));
        order.setUserId(RandomUtil.randomEle(Arrays.asList(101L, 102L, 103L)));
        order.setAmount(1000.0 * i);
        orderMapper.insert(order);
    }
}

2、查询列表数据

查询指定用户的订单列表。

@GetMapping("/list")
public AjaxResult list(Order order) {
    LambdaQueryWrapper<Order> wrapper = Wrappers.lambdaQuery(order);
    return AjaxResult.success(orderMapper.selectList(wrapper));
}

3、分页查询数据

分页查询指定用户的订单列表

@GetMapping("/page")
public AjaxResult page(Page<Order> page, Order order) {
    return AjaxResult.success(orderMapper.selectPage(page, Wrappers.lambdaQuery(order)));
}

4、查询详情

通过订单ID查询订单详情。

@GetMapping("/detail/{orderId}")
public AjaxResult detail(@PathVariable Long orderId) {
    return AjaxResult.success(orderMapper.selectById(orderId));
}

5、删除数据

通过订单ID删除订单(逻辑删除)

@DeleteMapping("/delete/{orderId}")
public AjaxResult delete(@PathVariable Long orderId) {
    return AjaxResult.success(orderMapper.deleteById(orderId));
}

6、修改数据

修改数据一般涉及部分列,比如修改订单表的订单状态等。

@PutMapping("/edit")
public AjaxResult edit(@RequestBody Order order) {
    return AjaxResult.success(orderMapper.updateById(order));
}

三、理论分析

1、选择分片列

选择分片列是经过精心对比后确定的,对于订单类场景,需要频繁以用户ID为查询条件筛选数据,因此将同一个用户的订单数据存放在一起有利于提高查询效率。

2、扩容

当分表后的表数据快速增长,可以预见即将达到瓶颈时,需要对分表进行扩容,扩容以2倍的速率进行,扩容期间需要迁移数据,工作量相对可控。

到此这篇关于SpringBoot+MybatisPlus+Mysql+Sharding-JDBC分库分表 的文章就介绍到这了,更多相关SpringBoot分库分表 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯