文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

AMP Tensor Cores节省内存PyTorch模型详解

2024-04-02 19:55

关注

导读

只需要添加几行代码,就可以得到更快速,更省显存的PyTorch模型。

你知道吗,在1986年Geoffrey Hinton就在Nature论文中给出了反向传播算法?

此外,卷积网络最早是由Yann le cun在1998年提出的,用于数字分类,他使用了一个卷积层。但是直到2012年晚些时候,Alexnet才通过使用多个卷积层来实现最先进的imagenet。

那么,是什么让他们现在如此出名,而不是之前呢?

只有在我们拥有大量计算资源的情况下,我们才能够在最近的过去试验和充分利用深度学习的潜力。

但是,我们是否已经足够好地使用了我们的计算资源呢?我们能做得更好吗?

这篇文章的主要内容是关于如何利用Tensor Cores和自动混合精度更快地训练深度学习网络。

什么是Tensor Cores?

根据NVIDIA的网站:

NVIDIA Turing和Volta GPUs都是由Tensor Cores驱动的,这是一项突破性的技术,提供了突破性的AI性能。Tensor Cores可以加速AI核心的大矩阵运算,在一次运算中就可以完成混合精度的矩阵乘法和累加运算。在一个NVIDIA GPU上有数百个Tensor Cores并行运行,这大大提高了吞吐量和效率。

简单地说,它们是专门的cores,非常适合特定类型的矩阵操作。

我们可以将两个FP16矩阵相乘,并将其添加到一个FP16/FP32矩阵中,从而得到一个FP16/FP32矩阵。Tensor cores支持混合精度数学,即以半精度(FP16)进行输入,以全精度(FP32)进行输出。上述类型的操作对许多深度学习任务具有内在价值,而Tensor cores为这种操作提供了专门的硬件。

现在,使用FP16和FP32主要有两个好处。

但也有缺点。当我们从FP32转到FP16时,我们需要降低精度。

FP32 vs FP16: FP32 有8个指数位和23个分数位,而FP16有5个指数位和10个分数位。

但是FP32真的有必要吗?

实际上,FP16可以很好地表示大多数权重和梯度。所以存储和使用FP32是很浪费的。

那么,我们如何使用Tensor Cores?

我检查了一下我的Titan RTX GPU有576个tensor cores和4608个NVIDIA CUDA核心。但是我如何使用这些tensor cores呢?

坦白地说,NVIDIA用几行代码就能提供自动混合精度,因此使用tensor cores很简单。我们需要在代码中做两件事:

如果你还不了解背景细节也没关系,代码实现相对简单。

使用PyTorch进行混合精度训练:

让我们从PyTorch中的一个基本网络开始。

N, D_in, D_out = 64, 1024, 512
x = torch.randn(N, D_in, device="cuda")
y = torch.randn(N, D_out, device="cuda")
model = torch.nn.Linear(D_in, D_out).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
for to in range(500):
   y_pred = model(x)
   loss = torch.nn.functional.mse_loss(y_pred, y)
   optimizer.zero_grad()
   loss.backward()
   optimizer.step()

为了充分利用自动混合精度训练的优势,我们首先需要安装apex库。只需在终端中运行以下命令。

$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

然后,我们只需向神经网络代码中添加几行代码,就可以利用自动混合精度(AMP)。

from apex import amp
N, D_in, D_out = 64, 1024, 512
x = torch.randn(N, D_in, device="cuda")
y = torch.randn(N, D_out, device="cuda")
model = torch.nn.Linear(D_in, D_out).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
for to in range(500):
   y_pred = model(x)
   loss = torch.nn.functional.mse_loss(y_pred, y)
   optimizer.zero_grad()
   with amp.scale_loss(loss, optimizer) as scaled_loss:
      scaled_loss.backward()
   optimizer.step()

在这里你可以看到我们用amp.initialize初始化了我们的模型。我们还使用amp.scale_loss来指定损失缩放。

基准测试

git clone https://github.com/MLWhiz/data_science_blogs
cd data_science_blogs/amp/pytorch-apex-experiment/
python run_benchmark.py
python make_plot.py --GPU 'RTX' --method 'FP32' 'FP16' 'amp' --batch 128 256 512 1024 2048

这会在home目录中生成下面的图:

在这里,我使用不同的精度和批大小设置训练了同一个模型的多个实例。我们可以看到,从FP32到amp,内存需求减少,而精度保持大致相同。时间也会减少,但不会减少那么多。这可能是由于数据集或模型太简单。

根据NVIDIA给出的基准测试,AMP比标准的FP32快3倍左右,如下图所示。

在单精度和自动混合精度两种精度下,加速比为固定周期训练的时间比。

以上就是AMP Tensor Cores节省内存PyTorch模型详解的详细内容,更多关于AMP Tensor Cores 内存模型PyTorch的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯