文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Java 基于雪花算法生成分布式id

2024-04-02 19:55

关注

SnowFlake算法原理介绍

在分布式系统中会将一个业务的系统部署到多台服务器上,用户随机访问其中一台,而之所以引入分布式系统就是为了让整个系统能够承载更大的访问量。诸如订单号这些我们需要它是全局唯一的,同时我们基本上都会将它作为查询条件;出于系统安全考虑不应当让其它人轻易的就猜出我们的订单号,同时也要防止公司的竞争对手直接通过订单号猜测出公司业务体量;为了保证系统的快速响应那么生成算法不能太耗时。而雪花算法正好解决了这些问题。

SnowFlake 算法(雪花算法), 是Twitter开源的分布式id生成算法。其核心思想就是: 使用一个64 bit的long型的数字作为全局唯一id。它的结构如下:

下面我们来对每一部分进一步的分析:

由于是基于时间来实现的且只有41位,由此可以计算出该算法只能使用70年左右:(2^41)/(1000*60*60*24*365) = 69.7 年 ;

这里不要觉得每毫秒4098个ID少了,我们计算一下每台机器理论上每秒可以支持 4096*1000 = 400万左右;要知道天猫双11那么大的订单量每秒也才50万笔;因此是完全够用的。

算法实现

我们在上面已经了解了SnowFlake的算法结构,下面是Java版本的实现。注意我们在实现该算法时,不一定要死死的按照上面的来实现,可以根据自身业务情况进行定制化;比如说机器ID,对于大部分的小项目来说根本不会分啥机房,因此我们完全可以根据服务器IP来弄;同时Twitter公布的算法中最终生成的id长度为15,但是还是根据自身业务情况进行调整。比如标准的算法只支持使用70年左右,但是我们可以通过扩展长度来增加年限。


public class SnowFlakeIdWorker {

    
    private static final long TW_EPOCH = 1622476800000L;

    
    private static final long WORKER_ID_BITS = 5L;

    
    private static final long DATA_CENTER_ID_BITS = 5L;

    
    private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    
    private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);

    
    private static final long SEQUENCE_BITS = 12L;

    
    private static final long WORKER_ID_SHIFT = SEQUENCE_BITS;

    
    private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;

    
    private static final long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;

    
    private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);

    
    private final long workerId;

    
    private final long dataCenterId;

    
    private long sequence = 0L;

    
    private long lastTimestamp = -1L;

    
    public SnowFlakeIdWorker(long workerId) {
        // 计算最大值
        long maxMachineId = (MAX_DATA_CENTER_ID + 1) * (MAX_WORKER_ID + 1) - 1;

        if (workerId < 0 || workerId > maxMachineId) {
            throw new IllegalArgumentException(String.format("Worker ID can't be greater than %d or less than 0", maxMachineId));
        }

        // 取高位部分作为机房ID部分
        this.dataCenterId = (workerId >> WORKER_ID_BITS) & MAX_DATA_CENTER_ID;
        // 取低位部分作为机器ID部分
        this.workerId = workerId & MAX_WORKER_ID;
    }

    
    public SnowFlakeIdWorker(long dataCenterId, long workerId) {
        if (workerId > MAX_WORKER_ID || workerId < 0) {
            throw new IllegalArgumentException(String.format("Worker ID can't be greater than %d or less than 0", MAX_WORKER_ID));
        }
        if (dataCenterId > MAX_DATA_CENTER_ID || dataCenterId < 0) {
            throw new IllegalArgumentException(String.format("DataCenter ID can't be greater than %d or less than 0", MAX_DATA_CENTER_ID));
        }

        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }

    
    public synchronized long nextId() {
        long timestamp = timeGen();
        // 如果当前时间小于上一次 ID 生成的时间戳,说明发生时钟回拨,为保证ID不重复抛出异常。
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 同一时间生成的,则序号+1
            sequence = (sequence + 1) & SEQUENCE_MASK;
            // 毫秒内序列溢出:超过最大值
            if (sequence == 0) {
                // 阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            // 时间戳改变,毫秒内序列重置
            sequence = 0L;
        }
        // 上次生成 ID 的时间戳
        lastTimestamp = timestamp;

        // 移位并通过或运算拼到一起
        return ((timestamp - TW_EPOCH) << TIMESTAMP_LEFT_SHIFT)
                | (dataCenterId << DATA_CENTER_ID_SHIFT)
                | (workerId << WORKER_ID_SHIFT)
                | sequence;
    }

    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }
}

使用示例


// 初始化
SnowFlakeIdWorker idWorker = new SnowFlakeIdWorker(1, 0);

// 生成ID
for(int i=0; i<100; i++){
    System.out.println(idWorker.nextId());
}

注意服务器不能发生时钟回拨,即系统时间发生错误,因为雪花算法是基于时间来生成,所有当发生时钟回拨后会导致出现重复ID的问题。

以上就是Java 基于雪花算法生成分布式id的详细内容,更多关于Java 雪花算法生成分布式id的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯