文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用matplotlib创建Gif动图的实现

2024-04-02 19:55

关注

1、Matplotlib 简介

数据可视化有助于更有效地讲述有关数据的故事并使其易于呈现。有时很难用静态图表来解释数据的变化,为此,我们将讨论matplotlib提供的名为“Animation”的动画库之一。以下是要涵盖的主题。

最流行的Python二维绘图库是Matplolib。大多数人从Matplotlib开始他们的探索性数据分析之旅。它可以轻松创建绘图、直方图、条形图、散点图等。与Pandas和Seaborn一样,它可以创建更复杂的视觉效果。

但是也有一些缺陷:

Matplotlib的命令式 API,通常过于冗长。

有时糟糕的风格默认值。

对网络和交互式图表的支持不佳。

对于大型和复杂的数据通常很慢。

2、绘制动画正弦和余弦波

参考代码如下

import matplotlib.animation as anime
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
fig = plt.figure()
l, = plt.plot([], [], 'k-')
l2, = plt.plot([], [], 'm--')
p1, = plt.plot([], [], 'ko')
p2, = plt.plot([], [], 'mo')
plt.xlabel('xlabel')
plt.ylabel('ylabel')
plt.title('title')
 
plt.xlim(-5, 5)
plt.ylim(-5, 5)
 
 
def func(x):
    return np.sin(x) * 3
 
 
def func2(x):
    return np.cos(x) * 3
 
 
metadata = dict(title="Movie", artist="sourabh")
writer = anime.PillowWriter(fps=15, metadata=metadata)
 
xlist = []
ylist = []
ylist2 = []
xlist2 = []
with writer.saving(fig, "sin+cosinewave.gif", 100):
    for xval in np.linspace(-5, 5, 100):
        xlist.append(xval)
        ylist.append(func(xval))
 
        l.set_data(xlist, ylist)
        l2.set_data(xlist2, ylist2)
 
        p1.set_data(xval, func(xval))
 
        writer.grab_frame()
    for xval in np.linspace(-5, 5, 100):
        xlist2.append(xval)
        ylist2.append(func2(xval))
 
        l.set_data(xlist, ylist)
        l2.set_data(xlist2, ylist2)
 
        p2.set_data(xval, func2(xval))
 
        writer.grab_frame()

动画效果图如下。

3、绘制曲面图

参考代码如下,这段代码会运行一段时间。

import matplotlib
from matplotlib import cm
import matplotlib.animation as anime
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
np.random.seed(29680801)
 
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
 
plt.xlim(-5, 5)
plt.ylim(-5, 5)
 
metadata = dict(title="Movie", artist="sourabh")
writer = anime.PillowWriter(fps=15, metadata=metadata)
 
def func(x, y, r, t):
    return np.cos(r / 2 + t) * np.exp(-np.square(r) / 50)
 
xdata = np.linspace(-10, 10, 1000)
ydata = np.linspace(-10, 10, 1000)
 
x_list, y_list = np.meshgrid(xdata, ydata)
r_list = np.sqrt(np.square(x_list) + np.square(y_list))
 
with writer.saving(fig, "exp3d.gif", 100):
    for t in np.linspace(0, 20, 160):
        z = func(x_list, y_list, r_list, t)
        ax.set_zlim(-1, 1)
        ax.plot_surface(x_list, y_list, z, cmap=cm.viridis)
        writer.grab_frame()
        plt.cla()
 

动画效果如下 

 4、绘制回归图

参考代码如下

import matplotlib
from matplotlib import cm
import matplotlib.animation as anime
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
np.random.seed(23680545)
 
metadata = dict(title="Movie", artist="sourabh")
writer = anime.PillowWriter(fps=15, metadata=metadata)
 
fig = plt.figure()
plt.xlim(-8, 8)
plt.ylim(-8, 8)
 
 
def func(x):
    return x * 1.2 + 0.1 + np.random.normal(0, 2, x.shape)
 
 
x = np.random.uniform(-7, 7, 10)
x = np.sort(x)
y = func(x)
 
coeff = np.polyfit(x, y, 1)
print(coeff)
xline = np.linspace(-6, 6, 40)
yline = np.polyval(coeff, xline)
 
lPnt, = plt.plot(x, y, 'o')
l, = plt.plot(xline, yline, 'k-', linewidth=3)
 
plt.show()
 
fig = plt.figure()
plt.xlim(-10, 10)
plt.ylim(-10, 10)
 
lPnt, = plt.plot([], [], 'o')
l, = plt.plot([], [], 'k-', linewidth=3)
 
x_List = []
y_List = []
 
x_pnt = []
y_pnt = []
 
with writer.saving(fig, "fitPlot.gif", 100):
    for xval, yval in zip(x, y):
        x_pnt.append(xval)
        y_pnt.append(yval)
 
        lPnt.set_data(x_pnt, y_pnt)
        l.set_data(x_List, y_List)
 
        writer.grab_frame()
        writer.grab_frame()
 
    for x_val, y_val in zip(xline, xline):
        x_List.append(x_val)
        y_List.append(y_val)
 
        lPnt.set_data(x_pnt, y_pnt)
        l.set_data(x_List, y_List)
 
        writer.grab_frame()
 
    for i in range(10):
        writer.grab_frame()

效果图如下

 到此这篇关于使用matplotlib创建Gif动图的实现的文章就介绍到这了,更多相关matplotlib创建Gif动图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯