文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python语言实现哈夫曼编码

2023-01-31 06:40

关注

汉语版:使用python实现huffman编码是一个能够很快地实现。所以我们选择使用python来实现我们这个程序。 l

E-version: we will use python to realize this program called huffman encoding and decoding. why we use python, because in python we can finish this program faster then other codes. this program are not the final implementation. actually, this is the first version i commit to git. i changed a lot in the least version . so if you run those codes on your environment. some problems may be exist; don`t worry, the first four drafts are right, you  can build everything based on them. so good lucky to you.

I:实现节点类

class Node:
    def __init__(self,freq):
        self.left = None
        self.right = None
        self.father = None
        self.freq = freq

    def is_left(self):
        return self.father.left == self

II:为每一个节点赋权值

def create_nodes(frequencies):
    return [Node(freq) for freq in frequencies]

III:创建哈夫曼树

def create_huffman_tree(nodes):
    queue = nodes[:]
    while len(queue) > 1:
        queue.sort(key=lambda item: item.freq)
        node_left = queue.pop(0)
        node_right = queue.pop(0)
        node_father = Node(node_left.freq + node_right.freq)
        node_father.left = node_left
        node_father.right = node_right
        node_left.father = node_father
        node_right.father = node_father
        queue.append(node_father)
    queue[0].father = None
    return queue[0]

III:遍历叶节点

def huffman_encoding(nodes, root):
    codes = [''] * len(nodes)
    for i in range(len(nodes)):
        node_tmp = nodes[i]
        while node_tmp != root:
            if node_tmp.is_left():
                codes[i] = '0' + codes[i]
            else:
                codes[i] = '1' + codes[i]
            node_tmp = node_tmp.father
    return codes

IV:获取字符出现的频数

# 获取字符出现的频数
def count_frequency(input_string):
    # 用于存放字符
    char_store = []
    # 用于存放频数
    freq_store = []

    # 解析字符串
    for index in range(len(input_string)):
        if char_store.count(input_string[index]) > 0:
            temp = int(freq_store[char_store.index(input_string[index])])
            temp = temp + 1
            freq_store[char_store.index(input_string[index])] = temp
        else:
            char_store.append(input_string[index])
            freq_store.append(1)
    # 返回字符列表和频数列表
    return char_store, freq_store

V:获取字符、频数的列表

# 获取字符、频数的列表
def get_char_frequency(char_store=[], freq_store=[]):
    # 用于存放char_frequency
    char_frequency = []
    for item in zip(char_store, freq_store):
        temp = (item[0], item[1])
        char_frequency.append(temp)
    return char_frequency

VI:将字符转换成哈夫曼编码


# 将字符转换成huffman编码
def get_huffman_file(input_string, char_frequency, codes):
    # 逐个字符替换
    file_content = ''
    for index in range(len(input_string)):
        for item in zip(char_frequency, codes):
            if input_string[index] == item[0][0]:
                file_content = file_content + item[1]
    file_name = 'huffman_' + str(uuid.uuid1())+'.txt'
    with open(file_name, 'w+') as destination:
        destination.write(file_content)
    return file_name

VII:解压缩哈夫曼文件

# 解压缩huffman文件
def decode_huffman(input_string,  char_store, freq_store):
    encode = ''
    decode = ''
    for index in range(len(input_string)):
        encode = encode + input_string[index]
        for item in zip(char_store, freq_store):
            if encode == item[1]:
                decode = decode + item[0]
                encode = ''
    return decode

VIII:计算压缩比(写错了,可以自行改写)

# 计算压缩比
def get_encode_ration(codes):
    # 计算所需要的二进制个数
    h_length = 0
    for item in codes:
        h_length = h_length + len(item)
    t_length = bin_middle(len(codes))*len(codes)
    ratio = t_length/h_length
    return str(ratio)[0:3]

# 计算所在的二进制空间
def bin_middle(number):
    n, i = 1, 0
    while n < number:
        n = n * 2
        i = i + 1
    return i

最后:Django文件接收,并返回


def upload(request):
    ctx = {}
    if request.method == "POST":
        file_name = str(request.FILES['file'])
        if not file_name.endswith('txt'):
            ctx['fail'] = 'file format exist wrong!'
        else:
            file = request.FILES['file']
            ctx['success'] = 'Successful'
            input_string = tool.read_file(tool.save_file(file))
            char_store, freq_store = tool.count_frequency(input_string)
            char_frequency = tool.get_char_frequency(char_store, freq_store)
            nodes = huf.create_nodes([item[1] for item in char_frequency])
            root = huf.create_huffman_tree(nodes)
            codes = huf.huffman_encoding(nodes, root)
            save_file_name = tool.get_huffman_file(input_string, char_frequency, codes)
            for item in zip(char_frequency, codes):
                print('Character:%s freq:%-2d   encoding: %s', item[0][0], item[0][1], item[1])
            ctx['node'] = char_frequency

            def file_iterator(files, chunk_size=512):
                with open(files) as f:
                    while True:
                        c = f.read(chunk_size)
                        if c:
                            yield c
                        else:
                            break
            the_file_name = tool.get_encode_ration(codes)+'_'+str(uuid.uuid1())+'.txt'
            response = StreamingHttpResponse(file_iterator(save_file_name))
            response['Content-Type'] = 'application/octet-stream'
            response['Content-Disposition'] = 'attachment;filename="{0}"'.format(the_file_name)
            return response


阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯