文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

pytorchtransform数据处理转c++问题

2023-02-02 12:03

关注

pytorch transform数据处理转c++

python推理代码转c++ sdk过程遇到pytorch数据处理的转换

1.python代码

import torch
from PIL import Image
from torchvision import transforms

data_transform = transforms.Compose(
     [transforms.Resize(256),
      transforms.CenterCrop(224),
      transforms.ToTensor(),
      transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

 img = Image.open(img_path)
 img = data_transform(img)

2.transforms.Resize(256)

Parameters
size (sequence or int) –
Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).

3.transforms.ToTensor()

Convert a PIL Image or numpy.ndarray to tensor. This transform does not support torchscript.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8

cv::Mat ClsSixPrivate::processImage(cv::Mat &img) {
    int inW = img.cols;
    int inH = img.rows;
    cv::Mat croped_image;
    if (inW > inH)
    {
        int newWidth = 256 * inW / inH;
        cv::resize(img, img, cv::Size(newWidth, 256), 0, 0, cv::INTER_LINEAR);
        croped_image = img(cv::Rect((newWidth - 224) / 2, 16, 224, 224)).clone();
    }
    else {
        int newHeight= 256 * inH / inW;
        cv::resize(img, img, cv::Size(256, newHeight), 0, 0, cv::INTER_LINEAR);
        croped_image = img(cv::Rect(16, (newHeight - 224) / 2, 224, 224)).clone();
    }
    
    std::vector<float> mean_value{ 0.485, 0.456,0.406 };
    std::vector<float> std_value{ 0.229, 0.224, 0.225 }; 
    cv::Mat dst;
    std::vector<cv::Mat> rgbChannels(3);
    cv::split(croped_image, rgbChannels);

    for (auto i = 0; i < rgbChannels.size(); i++)
    {
        rgbChannels[i].convertTo(rgbChannels[i], CV_32FC1, 1.0 / (std_value[i] * 255.0), (0.0 - mean_value[i]) / std_value[i]);
    }

    cv::merge(rgbChannels, dst);
    return dst;
}

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯