文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

用Python爬了微信好友,原来他们是这样的人...

2024-12-02 13:11

关注

随着微信的普及,越来越多的人开始使用微信。微信渐渐从一款单纯的社交软件转变成了一个生活方式,人们的日常沟通需要微信,工作交流也需要微信。微信里的每一个好友,都代表着人们在社会里扮演的不同角色。

今天这篇文章会基于Python对微信好友进行数据分析,这里选择的维度主要有:性别、头像、签名、位置,主要采用图表和词云两种形式来呈现结果,其中,对文本类信息会采用词频分析和情感分析两种方法。常言道:工欲善其事,必先利其器也。在正式开始这篇文章前,简单介绍下本文中使用到的第三方模块:

itchat不能用的可以参考:如何用Python查看微信好友撤回的消息?

以上模块均可通过 pip 安装,关于各个模块使用的详细说明,请自行查阅各自文档。

1.数据分析

分析微信好友数据的前提是获得好友信息,通过使用 itchat 这个模块,这一切会变得非常简单,我们通过下面两行代码就可以实现: 

  1. itchat.auto_login(hotReload = True)   
  2. friends = itchat.get_friends(update = True

同平时登录网页版微信一样,我们使用手机扫描二维码就可以登录,这里返回的friends对象是一个集合,第一个元素是当前用户。所以,在下面的数据分析流程中,我们始终取friends[1:]作为原始输入数据,集合中的每一个元素都是一个字典结构,以我本人为例,可以注意到这里有Sex、City、Province、HeadImgUrl、Signature这四个字段,我们下面的分析就从这四个字段入手:

2.好友性别

分析好友性别,我们首先要获得所有好友的性别信息,这里我们将每一个好友信息的Sex字段提取出来,然后分别统计出Male、Female和Unkonw的数目,我们将这三个数值组装到一个列表中,即可使用matplotlib模块绘制出饼图来,其代码实现如下: 

  1. def analyseSex(firends):   
  2.   sexs = list(map(lambda x:x['Sex'],friends[1:]))   
  3.  counts = list(map(lambda x:x[1],Counter(sexs).items()))   
  4.  labels = ['Unknow','Male','Female']   
  5.  colors = ['red','yellowgreen','lightskyblue']   
  6.  plt.figure(figsize=(8,5), dpi=80)   
  7.  plt.axes(aspect=1)   
  8.  plt.pie(counts, #性别统计结果   
  9.    labelslabels=labels, #性别展示标签   
  10.    colorscolors=colors, #饼图区域配色   
  11.    labeldistance = 1.1, #标签距离圆点距离   
  12.    autopct = '%3.1f%%', #饼图区域文本格式   
  13.    shadow = False, #饼图是否显示阴影   
  14.    startangle = 90, #饼图起始角度   
  15.    pctdistance = 0.6 #饼图区域文本距离圆点距离   
  16.  )   
  17.  plt.legend(loc='upper right',)   
  18.  plt.title(u'%s的微信好友性别组成' % friends[0]['NickName'])   
  19.  plt.show() 

这里简单解释下这段代码,微信中性别字段的取值有Unkonw、Male和Female三种,其对应的数值分别为0、1、2。通过Collection模块中的Counter()对这三种不同的取值进行统计,其items()方法返回的是一个元组的集合。

该元组的第一维元素表示键,即0、1、2,该元组的第二维元素表示数目,且该元组的集合是排序过的,即其键按照0、1、2 的顺序排列,所以通过map()方法就可以得到这三种不同取值的数目,我们将其传递给matplotlib绘制即可,这三种不同取值各自所占的百分比由matplotlib计算得出。下图是matplotlib绘制的好友性别分布图:

3.好友头像

分析好友头像,从两个方面来分析,第一,在这些好友头像中,使用人脸头像的好友比重有多大;第二,从这些好友头像中,可以提取出哪些有价值的关键字。

这里需要根据HeadImgUrl字段下载头像到本地,然后通过腾讯优图提供的人脸识别相关的API接口,检测头像图片中是否存在人脸以及提取图片中的标签。其中,前者是分类汇总,我们使用饼图来呈现结果;后者是对文本进行分析,我们使用词云来呈现结果。关键代码如下所示: 

  1. def analyseHeadImage(frineds):   
  2.  # Init Path   
  3.  basePath = os.path.abspath('.')  
  4.  baseFolder = basePath + '\\HeadImages\\'  
  5.  if(os.path.exists(baseFolder) == False):   
  6.   os.makedirs(baseFolder)    
  7.  # Analyse Images   
  8.  faceApi = FaceAPI()   
  9.  use_face = 0  
  10.  not_use_face = 0  
  11.  image_tags = ''   
  12.  for index in range(1,len(friends)):  
  13.   friend = friends[index]   
  14.   # Save HeadImages   
  15.   imgFile = baseFolder + '\\Image%s.jpg' % str(index)   
  16.   imgData = itchat.get_head_img(userName = friend['UserName'])   
  17.   if(os.path.exists(imgFile) == False):   
  18.    with open(imgFile,'wb') as file:   
  19.     file.write(imgData)     
  20.   # Detect Faces   
  21.   time.sleep(1)   
  22.   result = faceApi.detectFace(imgFile)  
  23.   if result == True:  
  24.    use_face += 1  
  25.   else:   
  26.    not_use_face += 1  
  27.   # Extract Tags   
  28.   result = faceApi.extractTags(imgFile)   
  29.   image_tags += ','.join(list(map(lambda x:x['tag_name'],result)))   
  30.  labels = [u'使用人脸头像',u'不使用人脸头像']   
  31.  counts = [use_face,not_use_face]   
  32.  colors = ['red','yellowgreen','lightskyblue']  
  33.  plt.figure(figsize=(8,5), dpi=80)   
  34.  plt.axes(aspect=1)   
  35.  plt.pie(counts, #性别统计结果   
  36.    labelslabels=labels, #性别展示标签   
  37.    colorscolors=colors, #饼图区域配色   
  38.    labeldistance = 1.1, #标签距离圆点距离   
  39.    autopct = '%3.1f%%', #饼图区域文本格式   
  40.    shadow = False, #饼图是否显示阴影   
  41.    startangle = 90, #饼图起始角度   
  42.    pctdistance = 0.6 #饼图区域文本距离圆点距离   
  43.  )   
  44.  plt.legend(loc='upper right',)   
  45.  plt.title(u'%s的微信好友使用人脸头像情况' % friends[0]['NickName'])   
  46.  plt.show()    
  47.  image_tagsimage_tags = image_tags.encode('iso8859-1').decode('utf-8')   
  48.  back_coloring = np.array(Image.open('face.jpg'))   
  49.  wordcloud = WordCloud(   
  50.   font_path='simfang.ttf',   
  51.   background_color="white",   
  52.   max_words=1200,   
  53.   mask=back_coloring,   
  54.   max_font_size=75,   
  55.   random_state=45,   
  56.   width=800,   
  57.   height=480,   
  58.   margin=15  
  59.  )    
  60.  wordcloud.generate(image_tags)   
  61.  plt.imshow(wordcloud)   
  62.  plt.axis("off")   
  63.  plt.show() 

这里我们会在当前目录新建一个HeadImages目录,用于存储所有好友的头像,然后我们这里会用到一个名为FaceApi类,这个类由腾讯优图的SDK封装而来,这里分别调用了人脸检测和图像标签识别两个API接口,前者会统计”使用人脸头像”和”不使用人脸头像”的好友各自的数目,后者会累加每个头像中提取出来的标签。其分析结果如下图所示:

可以注意到,在所有微信好友中,约有接近1/4的微信好友使用了人脸头像, 而有接近3/4的微信好友没有人脸头像,这说明在所有微信好友中对”颜值 “有自信的人,仅仅占到好友总数的25%,或者说75%的微信好友行事风格偏低调为主,不喜欢用人脸头像做微信头像。

其次,考虑到腾讯优图并不能真正的识别”人脸”,我们这里对好友头像中的标签再次进行提取,来帮助我们了解微信好友的头像中有哪些关键词,其分析结果如图所示:

通过词云,我们可以发现:在微信好友中的签名词云中,出现频率相对较高的关键字有:女孩、树木、房屋、文本、截图、卡通、合影、天空、大海。这说明在我的微信好友中,好友选择的微信头像主要有日常、旅游、风景、截图四个来源。

好友选择的微信头像中风格以卡通为主,好友选择的微信头像中常见的要素有天空、大海、房屋、树木。通过观察所有好友头像,我发现在我的微信好友中,使用个人照片作为微信头像的有15人,使用网络图片作为微信头像的有53人,使用动漫图片作为微信头像的有25人,使用合照图片作为微信头像的有3人,使用孩童照片作为微信头像的有5人,使用风景图片作为微信头像的有13人,使用女孩照片作为微信头像的有18人,基本符合图像标签提取的分析结果。

4.好友签名

分析好友签名,签名是好友信息中最为丰富的文本信息,按照人类惯用的”贴标签”的方法论,签名可以分析出某一个人在某一段时间里状态,就像人开心了会笑、哀伤了会哭,哭和笑两种标签,分别表明了人开心和哀伤的状态。

这里我们对签名做两种处理,第一种是使用结巴分词进行分词后生成词云,目的是了解好友签名中的关键字有哪些,哪一个关键字出现的频率相对较高;第二种是使用SnowNLP分析好友签名中的感情倾向,即好友签名整体上是表现为正面的、负面的还是中立的,各自的比重是多少。这里提取Signature字段即可,其核心代码如下: 

  1. def analyseSignature(friends):   
  2.  signatures = ''   
  3.  emotions = []   
  4.  pattern = re.compile("1f\d.+")   
  5.  for friend in friends:   
  6.   signature = friend['Signature'] 
  7.   if(signature != None):   
  8.    signaturesignature = signature.strip().replace('span', '').replace('class', '').replace('emoji', '')   
  9.    signature = re.sub(r'1f(\d.+)','',signature)   
  10.    if(len(signature)>0):   
  11.     nlp = SnowNLP(signature)  
  12.     emotions.append(nlp.sentiments)   
  13.     signatures += ' '.join(jieba.analyse.extract_tags(signature,5))   
  14.  with open('signatures.txt','wt',encoding='utf-8') as file:   
  15.    file.write(signatures)   
  16.  # Sinature WordCloud   
  17.  back_coloring = np.array(Image.open('flower.jpg'))   
  18.  wordcloud = WordCloud(   
  19.   font_path='simfang.ttf',   
  20.   background_color="white",   
  21.   max_words=1200,   
  22.   mask=back_coloring,   
  23.   max_font_size=75,   
  24.   random_state=45,   
  25.   width=960,   
  26.   height=720,   
  27.   margin=15  
  28.  )   
  29.  wordcloud.generate(signatures)   
  30.  plt.imshow(wordcloud)   
  31.  plt.axis("off")   
  32.  plt.show()   
  33.  wordcloud.to_file('signatures.jpg')   
  34.  # Signature Emotional Judgment   
  35.  count_good = len(list(filter(lambda x:x>0.66,emotions)))   
  36.  count_normal = len(list(filter(lambda x:x>=0.33 and x<=0.66,emotions)))   
  37.  count_bad = len(list(filter(lambda x:x<0.33,emotions)))   
  38.  labels = [u'负面消极',u'中性',u'正面积极']   
  39.  values = (count_bad,count_normal,count_good)  
  40.  plt.rcParams['font.sans-serif'] = ['simHei']   
  41.  plt.rcParams['axes.unicode_minus'] = False  
  42.  plt.xlabel(u'情感判断')   
  43.  plt.ylabel(u'频数')   
  44.  plt.xticks(range(3),labels)   
  45.  plt.legend(loc='upper right',)   
  46.  plt.bar(range(3), values, color = 'rgb')   
  47.  plt.title(u'%s的微信好友签名信息情感分析' % friends[0]['NickName'])   
  48.  plt.show() 

通过词云,我们可以发现:在微信好友的签名信息中,出现频率相对较高的关键词有:努力、长大、美好、快乐、生活、幸福、人生、远方、时光、散步。

通过以下柱状图,我们可以发现:在微信好友的签名信息中,正面积极的情感判断约占到55.56%,中立的情感判断约占到32.10%,负面消极的情感判断约占到12.35%。这个结果和我们通过词云展示的结果基本吻合,这说明在微信好友的签名信息中,约有87.66%的签名信息,传达出来都是一种积极向上的态度。

5.好友位置

分析好友位置,主要通过提取Province和City这两个字段。Python中的地图可视化主要通过Basemap模块,这个模块需要从国外网站下载地图信息,使用起来非常的不便。

百度的ECharts在前端使用的比较多,虽然社区里提供了pyecharts项目,可我注意到因为政策的改变,目前Echarts不再支持导出地图的功能,所以地图的定制方面目前依然是一个问题,主流的技术方案是配置全国各省市的JSON数据。

这里我使用的是BDP个人版,这是一个零编程的方案,我们通过Python导出一个CSV文件,然后将其上传到BDP中,通过简单拖拽就可以制作可视化地图,简直不能再简单,这里我们仅仅展示生成CSV部分的代码: 

  1. def analyseLocation(friends):   
  2.  headers = ['NickName','Province','City']   
  3.  with open('location.csv','w',encoding='utf-8',newline='',) as csvFile:  
  4.   writer = csv.DictWriter(csvFile, headers)   
  5.   writer.writeheader()   
  6.   for friend in friends[1:]:   
  7.    row = {}   
  8.    row['NickName'] = friend['NickName']   
  9.    row['Province'] = friend['Province']   
  10.    row['City'] = friend['City']   
  11.    writer.writerow(row) 

下图是BDP中生成的微信好友地理分布图,可以发现:我的微信好友主要集中在宁夏和陕西两个省份。

6.总结

这篇文章是我对数据分析的又一次尝试,主要从性别、头像、签名、位置四个维度,对微信好友进行了一次简单的数据分析,主要采用图表和词云两种形式来呈现结果。总而言之一句话,”数据可视化是手段而并非目的”,重要的不是我们在这里做了这些图出来,而是从这些图里反映出来的现象,我们能够得到什么本质上的启示,希望这篇文章能让大家有所启发。

最后推荐一下我们的星球:有兴趣玩一些趣味的Python程序,并且想玩服务器编程的可以加入我们,我们一年会带大家玩7个项目,大家可以修改我们的代码来扩展它的功能,比如监控股票的可以改成监控基金的,或者是多个金融数据产品,然后根据一些均线策略来提醒你的交易策略等等。

 

来源:菜鸟学Python内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯