文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

利用Python统计Jira数据并可视化

2024-04-02 19:55

关注

大家好,我是安果!

目前公司使用 Jira 作为项目管理工具,在每一次迭代完成后的复盘会上,我们都需要针对本次迭代的 Bug 进行数据统计,以帮助管理层能更直观的了解研发的代码质量

本篇文章将介绍如何利用统计 Jira 数据,并进行可视化

1. 准备

首先,安装 Python 依赖库

# 安装依赖库
pip3 install jira
pip3 install html-table
pip3 install pyecharts
pip3 install snapshot_selenium

其中

2. 实战一下

下面我们通过 7 个步骤来实现上面的功能

2-1 登录获取客户端连接对象

from jira import JIRA

class JiraObj(object):
    def __init__(self, bug_style, project_type):
        """
        :param project_name
        :param sprint: 迭代号码
        :param bug_style: BUG状态
        """
        # Jira首页地址
        self.server = 'https://jira.**.team'

        # Jira登录账号信息
        self.basic_auth = ('用户名', '密码')

        # 创建一个客户端连接信息
        self.jiraClinet = JIRA(server=self.server, basic_auth=self.basic_auth)

2-2 根据项目类型获取看板 id

...
        # 获取boards看板
        # 所有看板信息
        boards = [(item.id, item.name) for item in self.jiraClinet.boards()]
        board_id = self.__get_board_id(boards, project_type)
        print("看板id:", board_id)
...
    def __get_board_id(self, boards, project_type):
        """
        获取看板id
        :param project_type:
        :return:
        """
        board_id = 1
        for item in boards:
            if (project_type == PROJ_TYPE.Type1 and item[1] == 't1') or (
                    project_type == PROJ_TYPE.Type2 and item[1] == 't2'):
                board_id = item[0]
                break
        return board_id
..

2-3 根据看板 id 获取迭代 id 及迭代名称

...
 # 获取项目Sprint,让用户进行选择
        sprints = self.jiraClinet.sprints(board_id=board_id)
        for item in sprints:
            if str(sprint_no) in item.name:
                self.sprint_id = item.id
                self.sprint_name = item.name
                print(f"选择Sprint,id:{self.sprint_id},name:{self.sprint_name}")
                break
...

2-4  根据项目名、Bug 类型、迭代 id 组成 jsql 语句,并查询数据

...
 def get_bug_status_jsql(self, bug_status: BUG_STATUS):
        """
        通过bug状态,获取jsql
        :param bug_status:
        :return:
        """
        status_jsql = ''
        if bug_status == BUG_STATUS.ALL:
            status_jsql = ' '
        elif bug_status == BUG_STATUS.TO_VERIFY:
            # 待验证(已解决)
            status_jsql = ' AND status = 已解决 '
        elif bug_status == BUG_STATUS.TO_FIXED:
            # 待解决(打开、重新打开、处理中)
            status_jsql = ' AND status in (打开, 重新打开, 处理中) '
        elif bug_status == BUG_STATUS.CLOSED:
            # 关闭
            status_jsql = ' AND status = Closed '
        elif bug_status == BUG_STATUS.TO_FIXED_CONTAIN_DELAY:
            # 待解决(打开、重新打开、处理中、延期处理)
            status_jsql = ' AND status in (打开, 延期处理, 重新打开, 处理中) '
        return status_jsql
...
jql = f'project = {project_name} and issuetype = 故障  {self.get_bug_status_jsql(self.bug_style)} AND Sprint = {self.sprint_id} ORDER BY priority desc, updated DESC'
        print(jql)
        lists = self.get_issue_list(jql)
...

2-5  生成本地 HTML 统计数据

需要注意的是,使用 a 标签组装的链接不能直接跳转,需要针对数据进行二次替换才能正常进行链接跳转 

from HTMLTable import (
    HTMLTable
)

...
 def gen_html_table(self, datas):
        """
        初始化表单样式
        :return:
        """
        table = HTMLTable(caption=f'实时BUG统计【{self.project_name}】,一共{len(datas)}个')

        # 表头行
        table.append_header_rows((('ID', '状态', '优先级', '责任人', '终端', 'URL'),))

        # 添加数据
        table.append_data_rows(datas)

        # 设置样式
        table.caption.set_style({'font-size': '15px'})

        # 其他样式设置
        ...

        # 替换数据,便于展示href地址
        html = table.to_html().replace("&lt;", "<").replace("&gt;", ">").replace("&quot;", '"')

        with open(f"./output/{self.project_name}-bug_{current_time()}.html", 'w', encoding='utf-8') as file:
            file.write(html)
...
# 生成本地文件的数据
output_tuples = tuple([
            (item.get("key"), item.get("status"), item.get("priority"), item.get('duty'), item.get('end_type'),
             f'<a href="{item.get(" rel="external nofollow" url")}" target="_blank">点我查看</a>') for item in lists])

# 生成本地HTML文件
self.gen_html_table(output_tuples)
..

2-6 数据统计

首先,这里按 Bug 责任人进行分组,然后按数目进行降序排列

然后,按 Bug 优先等级进行降序排列

最后,获取每一个端的 Bug 总数

...
        # 2、统计每个人(按数目)
        datas_by_count = {}
        for item in lists:
            datas_by_count[item.get("duty")] = datas_by_count.get(item.get("duty"), 0) + 1

        # 降序排序
        datas_by_count = sorted(datas_by_count.items(), key=lambda item: item[1], reverse=True)

        # print("按Bug总数排序:", datas_by_count)

        # 3、统计每个人(按优先级)
        datas_by_priority = {}

        for item in datas_by_count:
            # 责任人
            name = item[0]
            # 5个优先级对应的数目
            counts = self.get_assignee_count(lists, name)
            datas_by_priority[name] = counts

        # 排序(按优先级多条件降序排列)
        datas_by_priority = sorted(datas_by_priority.items(),
                                   key=lambda item: (item[1][0], item[1][1], item[1][2], item[1][3]), reverse=True)

        # print("按Bug优先级排序:", datas_by_priority)

        # 4、根据终端进行统计分类
        keys, values = self.get_end_type_count(lists)
...

2-7 可视化

针对上面的 3 组数据,使用 pyecharts 绘制成柱状图和饼状图

...
      def draw_image(self, datas_by_count, datas_by_priority, keys, values):
        """
        绘制图片
        :param values:
        :param keys:
        :param datas_by_count: 按bug总数排序结果
        :param datas_by_priority: 按bug优先级排序结果
        :return:
        """
        # 1、按BUG总数排序绘制
        bar = (
            Bar().set_global_opts(
                title_opts=opts.TitleOpts(title=f"{self.project_name}", subtitle=f"{self.sprint_name}")))
        bar.add_xaxis([item[0] for item in datas_by_count])
        bar.add_yaxis(f"BUG总数", [item[1] for item in datas_by_count])

        # render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
        # 也可以传入路径参数,如 bar.render("mycharts.html")
        # bar.render(path=f'{sprint_name}-BUG总数.html')
        make_snapshot(snapshot, bar.render(), "./output/1.png")

        # 2、按优先级排序绘制
        bar2 = (
            # Bar(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
            Bar()
                .add_xaxis([item[0] for item in datas_by_priority])
                .add_yaxis(self.__get_priority(BUG_PRIORITY.Highest), [item[1][0] for item in datas_by_priority],
                           color='#6aa84f')
                .add_yaxis(self.__get_priority(BUG_PRIORITY.High), [item[1][1] for item in datas_by_priority],
                           color='#a2c4c9')
                .add_yaxis(self.__get_priority(BUG_PRIORITY.Medium), [item[1][2] for item in datas_by_priority],
                           color="#ff9900")
                .add_yaxis(self.__get_priority(BUG_PRIORITY.Low), [item[1][3] for item in datas_by_priority],
                           color="#ea9999")
                .add_yaxis(self.__get_priority(BUG_PRIORITY.Lowest), [item[1][4] for item in datas_by_priority],
                           color="#980000")
                .set_global_opts(
                title_opts=opts.TitleOpts(title=f"{self.project_name}", subtitle=f"{self.sprint_name}"))
        )
        # bar2.render(path=f'{sprint_name}-BUG优先级.html')
        make_snapshot(snapshot, bar2.render(), "./output/2.png")

        # 3、根据终端来绘制饼图
        if len(keys) > 0 and len(values) > 0:
            c = (
                Pie()
                    .add("", [list(z) for z in zip(keys, values)])
                    .set_global_opts(title_opts=opts.TitleOpts(title="各端BUG分布"))
                    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
            )
            make_snapshot(snapshot, c.render(), f"./output/{self.project_name}_end.png")

        # 4、合并两张图片
        self.concatenate_img(['./output/1.png', './output/2.png'], img_name=f'./output/{self.sprint_name}_bug.png',
                             axis=1)
...

3. 总结

通过上面的操作,每次只需要输入项目类型、迭代版本号、要统计的 Bug 类型,就能统计出所需要的数据并绘制成图表

到此这篇关于利用Python统计Jira数据并可视化的文章就介绍到这了,更多相关Python统计Jira数据内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯