文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Android 性能优化系列之bitmap图片优化

2024-04-02 19:55

关注

背景

Android开发中,加载图片过多、过大很容易引起OutOfMemoryError异常,即我们常见的内存溢出。因为Android对单个应用施加内存限制,默认分配的内存只有几M(具体视不同系统而定)。而载入的图片如果是JPG之类的压缩格式(JPG支持最高级别的压缩,不过该压缩是有损的),在内存中展开会占用大量的内存空间,也就容易形成内存溢出。那么高效的加载Bitmap是很重要的事情。Bitmap在Android中指的是一张图片,图片的格式有.jpg .jpg .webp 等常见的格式。

如何选择图片格式

一个原则: 在保证图片视觉不失真前提下,尽可能的缩小体积

Android目前常用的图片格式有jpg,jpeg和webp

采用webp能够在保持图片清晰度的情况下,可以有效减小图片所占有的磁盘空间大小

图片压缩

图片压缩可以从三个方面去考虑:

1.质量

质量压缩并不会改变图片在内存中的大小,仅仅会减小图片所占用的磁盘空间的大小,因为质量压缩不会改变图片的分辨率,而图片在内存中的大小是根据widthheight一个像素的所占用的字节数计算的,宽高没变,在内存中占用的大小自然不会变,质量压缩的原理是通过改变图片的位深和透明度来减小图片占用的磁盘空间大小,所以不适合作为缩略图,可以用于想保持图片质量的同时减小图片所占用的磁盘空间大小。另外,由于jpg是无损压缩,所以设置quality无效,


  
public static void compress(Bitmap.CompressFormat format, int quality) {
    File sdFile = Environment.getExternalStorageDirectory();
    File originFile = new File(sdFile, "originImg.jpg");
    Bitmap originBitmap = BitmapFactory.decodeFile(originFile.getAbsolutePath());
    ByteArrayOutputStream bos = new ByteArrayOutputStream();
    originBitmap.compress(format, quality, bos);
    try {
        FileOutputStream fos = new FileOutputStream(new File(sdFile, "resultImg.jpg"));
        fos.write(bos.toByteArray());
        fos.flush();
        fos.close();
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    } catch (IOException e) {
        e.printStackTrace();
    }
}

2.采样率

采样率压缩是通过设置BitmapFactory.Options.inSampleSize,来减小图片的分辨率,进而减小图片所占用的磁盘空间和内存大小。

设置的inSampleSize会导致压缩的图片的宽高都为1/inSampleSize,整体大小变为原始图片的inSampleSize平方分之一,当然,这些有些注意点:



public static void compress(int inSampleSize) {
    File sdFile = Environment.getExternalStorageDirectory();
    File originFile = new File(sdFile, "originImg.jpg");
    BitmapFactory.Options options = new BitmapFactory.Options();
    //设置此参数是仅仅读取图片的宽高到options中,不会将整张图片读到内存中,防止oom
    options.inJustDecodeBounds = true;
    Bitmap emptyBitmap = BitmapFactory.decodeFile(originFile.getAbsolutePath(), options);

    options.inJustDecodeBounds = false;
    options.inSampleSize = inSampleSize;
    Bitmap resultBitmap = BitmapFactory.decodeFile(originFile.getAbsolutePath(), options);
    ByteArrayOutputStream bos = new ByteArrayOutputStream();
    resultBitmap.compress(Bitmap.CompressFormat.JPEG, 100, bos);
    try {
        FileOutputStream fos = new FileOutputStream(new File(sdFile, "resultImg.jpg"));
        fos.write(bos.toByteArray());
        fos.flush();
        fos.close();
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    } catch (IOException e) {
        e.printStackTrace();
    }
}

3.缩放

通过减少图片的像素来降低图片的磁盘空间大小和内存大小,可以用于缓存缩略图


 
    public static Bitmap resizeBitmap(Context context,int id,int maxW,int maxH,boolean hasAlpha,Bitmap reusable){
        Resources resources = context.getResources();
        BitmapFactory.Options options = new BitmapFactory.Options();
        // 只解码出 outxxx参数 比如 宽、高
        options.inJustDecodeBounds = true;
        BitmapFactory.decodeResource(resources,id,options);
        //根据宽、高进行缩放
        int w = options.outWidth;
        int h = options.outHeight;
        //设置缩放系数
        options.inSampleSize = calcuteInSampleSize(w,h,maxW,maxH);
        if (!hasAlpha){
            options.inPreferredConfig = Bitmap.Config.RGB_565;
        }
        options.inJustDecodeBounds = false;
        //设置成能复用
        options.inMutable=true;
        options.inBitmap=reusable;
        return BitmapFactory.decodeResource(resources,id,options);
    }

    
    private static int calcuteInSampleSize(int w,int h,int maxW,int maxH) {
        int inSampleSize = 1;
        if (w > maxW && h > maxH){
            inSampleSize = 2;
            //循环 使宽、高小于 最大的宽、高
            while (w /inSampleSize > maxW && h / inSampleSize > maxH){
                inSampleSize *= 2;
            }
        }
        return inSampleSize;
    }
}

Android的图片引擎使用的是阉割版的skia引擎,去掉了图片压缩中的哈夫曼算法


void write_JPEG_file(uint8_t *data, int w, int h, jint q, const char *path) {
//    3.1、创建jpeg压缩对象
    jpeg_compress_struct jcs;
    //错误回调
    jpeg_error_mgr error;
    jcs.err = jpeg_std_error(&error);
    //创建压缩对象
    jpeg_create_compress(&jcs);
//    3.2、指定存储文件  write binary
    FILE *f = fopen(path, "wb");
    jpeg_stdio_dest(&jcs, f);
//    3.3、设置压缩参数
    jcs.image_width = w;
    jcs.image_height = h;
    //bgr
    jcs.input_components = 3;
    jcs.in_color_space = JCS_RGB;
    jpeg_set_defaults(&jcs);
    //开启哈夫曼功能
    jcs.optimize_coding = true;
    jpeg_set_quality(&jcs, q, 1);
//    3.4、开始压缩
    jpeg_start_compress(&jcs, 1);
//    3.5、循环写入每一行数据
    int row_stride = w * 3;//一行的字节数
    JSAMPROW row[1];
    while (jcs.next_scanline < jcs.image_height) {
        //取一行数据
        uint8_t *pixels = data + jcs.next_scanline * row_stride;
        row[0]=pixels;
        jpeg_write_scanlines(&jcs,row,1);
    }
//    3.6、压缩完成
    jpeg_finish_compress(&jcs);
//    3.7、释放jpeg对象
    fclose(f);
    jpeg_destroy_compress(&jcs);
}

因为涉及到jni部分,暂时只贴一下使用的代码,后面会写一些jni部分的博客与大家分享。

图片复用主要就是指的复用内存块,不需要在重新给这个bitmap申请一块新的内存,避免了一次内存的分配和回收,从而改善了运行效率。

需要注意的是inBitmap只能在3.0以后使用。2.3上,bitmap的数据是存储在native的内存区域,并不是在Dalvik的内存堆上。

使用inBitmap,在4.4之前,只能重用相同大小的bitmap的内存区域,而4.4之后你可以重用任何bitmap的内存区域,只要这块内存比将要分配内存的bitmap大就可以。这里最好的方法就是使用LRUCache来缓存bitmap,后面来了新的bitmap,可以从cache中按照api版本找到最适合重用的bitmap,来重用它的内存区域。


   BitmapFactory.Options options = new BitmapFactory.Options();
        // 只解码出 outxxx参数 比如 宽、高
        options.inJustDecodeBounds = true;
        BitmapFactory.decodeResource(resources,id,options);
        //根据宽、高进行缩放
        int w = options.outWidth;
        int h = options.outHeight;
        //设置缩放系数
        options.inSampleSize = calcuteInSampleSize(w,h,maxW,maxH);
        if (!hasAlpha){
            options.inPreferredConfig = Bitmap.Config.RGB_565;
        }
        options.inJustDecodeBounds = false;
        //设置成能复用
        options.inMutable=true;
        options.inBitmap=reusable;

android中有一个LruCache是基于最记最少使用算法实现的一个线程安全的数据缓存类,当超出设定的缓存容量时,优先淘汰最近最少使用的数据LruCache的LRU缓存策略是利用LinkedHashMap来实现的,并通过封装get/put等相关方法来实现控制缓存大小以及淘汰元素,但不支持为null的key和value。 我们可以使用JakeWharton提供的一个开源库github.com/JakeWharton… 来实现我们图片缓存的逻辑

省略了内存和磁盘的部分。

到此这篇关于Android 性能优化系列之bitmap图片优化的文章就介绍到这了,更多相关Android 性能优化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-移动开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯