文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

R语言实现漂亮的ROC图效果

2024-04-02 19:55

关注

pROC是一个专门用来计算和绘制ROC曲线的R包,目前已被CRAN收录,因此安装也非常简单,同时该包也兼容ggplot2函数绘图,本次就教大家怎么用pROC来快速画出ROC图。在医学领域主要用于判断某种因素对于某种疾病的诊断是否有诊断价值。什么是ROC曲线和AUC,以及如何去看ROC曲线的结果,可以这样总结:ROC曲线呢,其实就是每个对应的cutoff值都有一个对应的真阳性率(纵坐标)和假阳性率(横坐标),比如选择了10个cutoff值,那就相当于有个10个点,把这些点连成一条线就是ROC曲线。AUC值就是ROC曲线下的面积,一般认为AUC值在0.7~1之间,模型预测的结果才有效。TPR(真阳性率) = TP(真阳)/(TP(真阳) + FN(假阴)),FPR(假阳性率) = FP(假阳) / (FP(假阳) + TN(真阴))。 比如下面的一个模型预测后的数据结果:

上图中如果选cutoff值为0.5时
TPR = 5 /(5 + 0)= 1,
FPR = 2 / (2 + 3) = 0.4, 
预测的准确性 = (TP + TN )/ 总的样本数 = (5 + 3)/10 = 0.8

好了,话不多说,我们直接上代码

1.读取数据

library(openxlsx)
ROC <- read.xlsx("ROC曲线.xlsx")

2.AUC和CI的计算

library(pROC)
## roc的计算,可以一次性批量计算a、b、c三组数据
res<-roc(outcome~a+b+c,data=ROC,aur=TRUE,
         ci=TRUE, # 显示95%CI
         # percent=TRUE, ##是否需要以百分比显示
         levels=c('group1','group2'),direction=">" #设置分组方向
         )
## 平滑曲线的ROC结果
smooth<-roc(outcome~a+b+c,data=ROC,aur=TRUE,
         ci=TRUE, # 显示95%CI
         # percent=TRUE, ##是否需要以百分比显示
         smooth=TRUE,
         levels=c('group1','group2'),direction=">" #设置分组方向
         )

显示非平滑ROC曲线的结果

res
Call:
roc.formula(formula = outcome ~ a, data = ROC, aur = TRUE, ci = TRUE,     levels = c("group1", "group2"), direction = ">")
Data: a in 40 controls (outcome group1) > 32 cases (outcome group2).
Area under the curve: 0.7328
95% CI: 0.6171-0.8485 (DeLong)
$b
Call:
roc.formula(formula = outcome ~ b, data = ROC, aur = TRUE, ci = TRUE,     levels = c("group1", "group2"), direction = ">")

Data: b in 40 controls (outcome group1) > 32 cases (outcome group2).
Area under the curve: 0.8234
95% CI: 0.7303-0.9165 (DeLong)
$c
Call:
roc.formula(formula = outcome ~ c, data = ROC, aur = TRUE, ci = TRUE,     levels = c("group1", "group2"), direction = ">")

Data: c in 40 controls (outcome group1) > 32 cases (outcome group2).
Area under the curve: 0.9242
95% CI: 0.8679-0.9805 (DeLong)

3.利用ggplot2绘图

library(ggplot2)
pa<- ggroc(smooth$a, 
       legacy.axes = TRUE # 将X轴改为0-1,(默认是1-0)
       )+
   geom_segment(aes(x = 0, xend = 1, y = 0, yend = 1), 
                color="darkgrey", linetype=4)+
 theme_bw() +# 设置背景
 ggtitle('a-ROC')
pb<- ggroc(smooth$b, legacy.axes = TRUE)+geom_segment(aes(x = 0, xend = 1, y = 0, yend = 1), color="darkgrey", linetype=4)+theme_bw() +ggtitle('b-ROC')
pc<- ggroc(smooth$c, legacy.axes = TRUE)+geom_segment(aes(x = 0, xend = 1, y = 0, yend = 1), color="darkgrey", linetype=4)+theme_bw() +ggtitle('c-ROC')
cowplot::plot_grid(pa,pb,pc,labels = "AUTO",nrow = 1)

4.合并多个ROC曲线结果

ggroc(smooth, legacy.axes = TRUE)+
    geom_segment(aes(x = 0, xend = 1, y = 0, yend = 1), color="darkgrey", linetype=4)+
    theme_bw()+ggtitle('ROC')+ggsci::scale_color_lancet()+
    annotate("text",x=0.75,y=0.125,label=paste("a-AUC = ", round(res$a$auc,3)))+
    annotate("text",x=0.75,y=0.25,label=paste("b-AUC = ", round(res$b$auc,3)))+
    annotate("text",x=0.75,y=0.375,label=paste("c-AUC = ", round(res$c$auc,3)))

到此这篇关于R语言实现漂亮的ROC图的文章就介绍到这了,更多相关R语言 ROC图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯