文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python小波变换去噪

2023-01-31 01:34

关注

  一,小波去噪原理:

  信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。

  小波阀值去噪的基本问题包括三个方面:小波基的选择,阀值的选择,阀值函数的选择。

  (1) 小波基的选择:通常我们希望所选取的小波满足以下条件:正交性、高消失矩、紧支性、对称性或反对称性。但事实上具有上述性质的小波是不可能存在的,因为小波是对称或反对称的只有Haar小波,并且高消失矩与紧支性是一对矛盾,所以在应用的时候一般选取具有紧支的小波以及根据信号的特征来选取较为合适的小波。

  (2) 阀值的选择:直接影响去噪效果的一个重要因素就是阀值的选取,不同的阀值选取将有不同的去噪效果。目前主要有通用阀值(VisuShrink)、SureShrink阀值、Minimax阀值、BayesShrink阀值等。

  (3) 阀值函数的选择:阀值函数是修正小波系数的规则,不同的反之函数体现了不同的处理小波系数的策略。最常用的阀值函数有两种:一种是硬阀值函数,另一种是软阀值函数。还有一种介于软、硬阀值函数之间的Garrote函数。

  另外,对于去噪效果好坏的评价,常用信号的信噪比(SNR)与估计信号同原始信号的均方根误差(RMSE)来判断。

  二,在python中使用小波分析进行阈值去噪声,使用pywt.threshold函数

  #coding=gbk

  #使用小波分析进行阈值去噪声,使用pywt.threshold

  import pywt

  import numpy as np

  import pandas as pd

  import matplotlib.pyplot as plt

  import math

  data = np.linspace(1, 10, 10)

  print(data)

  # [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

  # pywt.threshold(data, value, mode, substitute) mode 模式有4种,soft, hard, greater, less; substitute是替换值

  data_soft = pywt.threshold(data=data, value=6, mode='soft', substitute=12)

  print(data_soft)

  # [12. 12. 12. 12. 12. 0. 1. 2. 3. 4.] 将小于6 的值设置为12, 大于等于6 的值全部减去6

  data_hard = pywt.threshold(data=data, value=6, mode='hard', substitute=12)

  print(data_hard)

  # [12. 12. 12. 12. 12. 6. 7. 8. 9. 10.] 将小于6 的值设置为12, 其余的值不变

  data_greater = pywt.threshold(data, 6, 'greater', 12)

  print(data_greater)

  # [12. 12. 12. 12. 12. 6. 7. 8. 9. 10.] 将小于6 的值设置为12,大于等于阈值的值不变化

  data_less = pywt.threshold(data, 6, 'less', 12)

  print(data_less)

  # [ 1. 2. 3. 4. 5. 6. 12. 12. 12. 12.] 将大于6 的值设置为12, 小于等于阈值的值不变

  三,在python中使用ecg心电信号进行小波去噪实验

  import matplotlib.pyplot as plt

  import pywt

  # Get data:

  ecg = pywt.data.ecg() # 生成心电信号

  index = []

  data = []

  for i in range(len(ecg)-1):

  X = float(i)

  Y = float(ecg[i])

  index.append(X)

  data.append(Y)

  # Create wavelet object and define parameters

  w = pywt.Wavelet('db8') # 选用Daubechies8小波

  maxlev = pywt.dwt_max_level(len(data), w.dec_len)

  print("maximum level is " + str(maxlev))

  threshold = 0.04 # Threshold for filtering

  # Decompose into wavelet components, to the level selected:

  coeffs = pywt.wavedec(data, 'db8', level=maxlev) # 将信号进行小波分解

  plt.figure()

  for i in range(1, len(coeffs)):

  coeffs[i] = pywt.threshold(coeffs[i], threshold*max(coeffs[i])) # 将噪声滤波

  datarec = pywt.waverec(coeffs, 'db8') # 将信号进行小波重构

  mintime = 0无锡人流多少钱 http://www.bhnfkyy.com/

  maxtime = mintime + len(data) + 1

  plt.figure()

  plt.subplot(2, 1, 1)

  plt.plot(index[mintime:maxtime], data[mintime:maxtime])

  plt.xlabel('time (s)')

  plt.ylabel('microvolts (uV)')

  plt.title("Raw signal")

  plt.subplot(2, 1, 2)

  plt.plot(index[mintime:maxtime], datarec[mintime:maxtime-1])

  plt.xlabel('time (s)')

  plt.ylabel('microvolts (uV)')

  plt.title("De-noised signal using wavelet techniques")

  plt.tight_layout()

  plt.show()

  运行结果如下:

  51.png


阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯