文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

【机器学习】DBSCAN聚类算法(含Python实现)

2023-10-01 14:41

关注

文章目录

一、算法介绍

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,可以将数据点分成不同的簇,并且能够识别噪声点(不属于任何簇的点)。

DBSCAN聚类算法的基本思想是:

在给定的数据集中,根据每个数据点周围其他数据点的密度情况,将数据点分为核心点、边界点和噪声点。

接着,从核心点开始,通过密度相连的数据点不断扩张,形成一个簇。

在这里插入图片描述

DBSCAN算法的优点是能够处理任意形状的簇,不需要先预先指定簇的个数,能够自动识别噪声点并将其排除在聚类之外。

然而,该算法的缺点是对于密度差异较大的数据集,可能无法有效聚类。此外,算法的参数需要根据数据集的特性来合理选择,如半径参数和密度参数。

二、例子

假设我们有以下的数据点集合:

[(1,1), (1,2), (2,1), (8,8), (8,9), (9,8), (15,15)]

我们可以使用DBSCAN算法来将这些点分成不同的簇。

首先,我们需要设置两个参数:

我们这里设置 ϵ = 2 \epsilon=2 ϵ=2 m i n P t s = 3 minPts=3 minPts=3

接下来,我们从数据集中选取一个点,比如第一个点 ( 1 , 1 ) (1,1) (1,1)作为种子点,并将该点标记为“核心点”,因为它周围有超过 m i n P t s minPts minPts个点在半径 ϵ \epsilon ϵ的范围内。

然后,我们找到与该点距离在 ϵ \epsilon ϵ内的所有点,将它们标记为与该点“密度直达”(density-reachable),并将这些点加入到同一个簇内。这里包括(1,2)和(2,1)。

接着,我们选取下一个未被分类的点,这里是(8,8),将其标记为“核心点”,并将与它距离在 ϵ \epsilon ϵ内的所有点加入同一簇中,这里包括(8,9)和(9,8)。

最后,我们选取最后一个未被分类的点,(15,15),但该点只有一个点在 ϵ \epsilon ϵ内,不足以满足 m i n P t s minPts minPts的要求,因此该点被标记为噪声点。

于是,最终的聚类结果为:

Cluster 1: [(1,1), (1,2), (2,1)]Cluster 2: [(8,8), (8,9), (9,8)]Noise: [(15,15)]

可以看出,DBSCAN算法成功地将数据点分成了两个簇,并且将噪声点(15,15)排除在聚类之外。

三、Python实现

3.1 例1

我们还是以上面例子为例,进行Python实现:

from sklearn.cluster import DBSCANimport numpy as np# 输入数据X = np.array([(1,1), (1,2), (2,1), (8,8), (8,9), (9,8), (15,15)])# 创建DBSCAN对象,设置半径和最小样本数dbscan = DBSCAN(eps=2, min_samples=3)# 进行聚类labels = dbscan.fit_predict(X)# 输出聚类结果for i in range(max(labels)+1):    print(f"Cluster {i+1}: {list(X[labels==i])}")print(f"Noise: {list(X[labels==-1])}")

在这里插入图片描述
与手算结果一致。

我们使用chatgpt对上面的代码翻译一下:

在这里插入图片描述

这表明DBSCAN算法已经在输入数据中识别出了三个簇,第一个簇有三个点,第二个簇有三个点,第三个簇有一个点。在这个特定的数据集中没有噪声。

3.2 算法参数详解

下面对sklearn.cluster模块中的参数进行说明:

在这里插入图片描述
总之,不同的聚类算法具有不同的参数设置,可以根据具体问题选择不同的算法和参数组合来实现最佳的聚类效果。

DBSCAN算法的调用方法如下:

DBSCAN(eps=0.5, *, min_samples=5, metric='euclidean', metric_params=None, algorithm='auto', leaf_size=30, p=None, n_jobs=None)

该算法提供了多个可调参数,以控制算法的聚类效果。下面对常用的参数进行详细说明:

这些参数对于控制DBSCAN算法的聚类效果非常重要,需要根据具体的数据集和需求进行选择和调整。在使用DBSCAN算法时,我们通常需要对这些参数进行多次实验和调整,以达到最佳的聚类效果。

3.3 鸢尾花数据集

再以著名的鸢尾花数据集为例进行Python实现:

from sklearn.cluster import DBSCANfrom sklearn.datasets import load_irisfrom sklearn.preprocessing import StandardScaler# 加载数据集iris = load_iris()X = iris.data# 数据预处理,标准化数据scaler = StandardScaler()X = scaler.fit_transform(X)# 使用DBSCAN聚类算法dbscan = DBSCAN(eps=0.5, min_samples=5)y_pred = dbscan.fit_predict(X)# 输出聚类结果print('聚类结果:', y_pred)

在这里插入图片描述

代码解释如下:

在这里插入图片描述
在这里插入图片描述

总之,这段代码演示了如何使用sklearn.cluster模块中的DBSCAN聚类算法对数据进行聚类分析,首先通过标准化对数据进行预处理,然后设置DBSCAN算法的参数,对数据集进行拟合和预测,最后输出聚类结果。

不过这次结果中将很多点设置为了噪声点(当然我们可以将噪声点归为一类),如果觉得现在的结果不满意,可以进一步调整算法中的参数。这里就省略了。

来源地址:https://blog.csdn.net/wzk4869/article/details/129775584

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯