文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pandas.concat连接DataFrame,Series的示例代码

2023-02-22 12:01

关注

如何使用pandas.concat()函数连接pandas.DataFrame和pandas.Series。

将对以下内容进行说明。

使用以下的pandas.DataFrame和pandas.Series为例。

import pandas as pd

df1 = pd.DataFrame({'A': ['A1', 'A2', 'A3'],
                    'B': ['B1', 'B2', 'B3'],
                    'C': ['C1', 'C2', 'C3']},
                   index=['ONE', 'TWO', 'THREE'])
print(df1)
#         A   B   C
# ONE    A1  B1  C1
# TWO    A2  B2  C2
# THREE  A3  B3  C3

df2 = pd.DataFrame({'C': ['C2', 'C3', 'C4'],
                    'D': ['D2', 'D3', 'D4']},
                   index=['TWO', 'THREE', 'FOUR'])
print(df2)
#         C   D
# TWO    C2  D2
# THREE  C3  D3
# FOUR   C4  D4

s1 = pd.Series(['X1', 'X2', 'X3'], index=['ONE', 'TWO', 'THREE'], name='X')
print(s1)
# ONE      X1
# TWO      X2
# THREE    X3
# Name: X, dtype: object

s2 = pd.Series(['Y2', 'Y3', 'Y4'], index=['TWO', 'THREE', 'FOUR'], name='Y')
print(s2)
# TWO      Y2
# THREE    Y3
# FOUR     Y4
# Name: Y, dtype: object

pandas.concat的基本用法()

指定要连接的对象:objs
通过参数objs指定要连接的pandas.DataFrame和pandas.Series,指定类型为列表或元组。

df_concat = pd.concat([df1, df2])
print(df_concat)
#          A    B   C    D
# ONE     A1   B1  C1  NaN
# TWO     A2   B2  C2  NaN
# THREE   A3   B3  C3  NaN
# TWO    NaN  NaN  C2   D2
# THREE  NaN  NaN  C3   D3
# FOUR   NaN  NaN  C4   D4

要连接的对象的数量不限于两个,可以是三个或更多。

df_concat_multi = pd.concat([df1, df2, df1])
print(df_concat_multi)
#          A    B   C    D
# ONE     A1   B1  C1  NaN
# TWO     A2   B2  C2  NaN
# THREE   A3   B3  C3  NaN
# TWO    NaN  NaN  C2   D2
# THREE  NaN  NaN  C3   D3
# FOUR   NaN  NaN  C4   D4
# ONE     A1   B1  C1  NaN
# TWO     A2   B2  C2  NaN
# THREE   A3   B3  C3  NaN

结果是创建了一个新的对象,原始对象保持不变。

连接方向的指定(垂直/水平):axis

垂直或水平方向由axis参数指定。 如果axis = 0,则它们是垂直链接的。默认设置为axis = 0,因此可以省略不写。

df_v = pd.concat([df1, df2], axis=0)
print(df_v)
#          A    B   C    D
# ONE     A1   B1  C1  NaN
# TWO     A2   B2  C2  NaN
# THREE   A3   B3  C3  NaN
# TWO    NaN  NaN  C2   D2
# THREE  NaN  NaN  C3   D3
# FOUR   NaN  NaN  C4   D4

axis = 1,水平方向上连接。

df_h = pd.concat([df1, df2], axis=1)
print(df_h)
#          A    B    C    C    D
# ONE     A1   B1   C1  NaN  NaN
# TWO     A2   B2   C2   C2   D2
# THREE   A3   B3   C3   C3   D3
# FOUR   NaN  NaN  NaN   C4   D4

指定连接方法(外部连接/内部连接):join

参数join:指定列名(或行名)的并集,或者仅将公共部分保留。

join ='outer’是外部连接。列名(或行名)形成一个联合,保留所有列(或行)。它是默认设置,因此可以省略不写。在这种情况下,原始对象中列(或行)不存在的值将由的缺少值NaN代替。

join ='inner’是内部连接。仅保留具有相同列名(或行名)的列(或行)。

df_v_out = pd.concat([df1, df2], join='outer')
print(df_v_out)
#          A    B   C    D
# ONE     A1   B1  C1  NaN
# TWO     A2   B2  C2  NaN
# THREE   A3   B3  C3  NaN
# TWO    NaN  NaN  C2   D2
# THREE  NaN  NaN  C3   D3
# FOUR   NaN  NaN  C4   D4

df_v_in = pd.concat([df1, df2], join='inner')
print(df_v_in)
#         C
# ONE    C1
# TWO    C2
# THREE  C3
# TWO    C2
# THREE  C3
# FOUR   C4

水平方向。

df_h_out = pd.concat([df1, df2], axis=1, join='outer')
print(df_h_out)
#          A    B    C    C    D
# FOUR   NaN  NaN  NaN   C4   D4
# ONE     A1   B1   C1  NaN  NaN
# THREE   A3   B3   C3   C3   D3
# TWO     A2   B2   C2   C2   D2

df_h_in = pd.concat([df1, df2], axis=1, join='inner')
print(df_h_in)
#         A   B   C   C   D
# TWO    A2  B2  C2  C2  D2
# THREE  A3  B3  C3  C3  D3

如何更改列名和行名,请参考下列连接。

01_Pandas.DataFrame的行名和列名的修改

pandas.DataFrame的连接

将pandas.DataFrames连接在一起时,返回的也是pandas.DataFrame类型的对象。

df_concat = pd.concat([df1, df2])
print(df_concat)
#          A    B   C    D
# ONE     A1   B1  C1  NaN
# TWO     A2   B2  C2  NaN
# THREE   A3   B3  C3  NaN
# TWO    NaN  NaN  C2   D2
# THREE  NaN  NaN  C3   D3
# FOUR   NaN  NaN  C4   D4

print(type(df_concat))
# <class 'pandas.core.frame.DataFrame'>

pandas.Series的连接

如果是pandas.Series之间的连接,则垂直连接(默认值axis= 0)返回的也是pandas.Series类型的对象。

s_v = pd.concat([s1, s2])
print(s_v)
# ONE      X1
# TWO      X2
# THREE    X3
# TWO      Y2
# THREE    Y3
# FOUR     Y4
# dtype: object

print(type(s_v))
# <class 'pandas.core.series.Series'>

axis = 1时,水平方向连接,返回pandas.DataFrame类型的对象。

s_h = pd.concat([s1, s2], axis=1)
print(s_h)
#          X    Y
# FOUR   NaN   Y4
# ONE     X1  NaN
# THREE   X3   Y3
# TWO     X2   Y2

print(type(s_h))
# <class 'pandas.core.frame.DataFrame'>

也可以使用参数join。

s_h_in = pd.concat([s1, s2], axis=1, join='inner')
print(s_h_in)
#         X   Y
# TWO    X2  Y2
# THREE  X3  Y3

pandas.DataFrame和pandas.Series的连接

对于pandas.DataFrame和pandas.Series连接,水平连接(axis= 1)将pandas.Series添加为新列。列名称是pandas.Series的名称。

df_s_h = pd.concat([df1, s2], axis=1)
print(df_s_h)
#          A    B    C    Y
# FOUR   NaN  NaN  NaN   Y4
# ONE     A1   B1   C1  NaN
# THREE   A3   B3   C3   Y3
# TWO     A2   B2   C2   Y2

也可以使用参数join。

df_s_h_in = pd.concat([df1, s2], axis=1, join='inner')
print(df_s_h_in)
#         A   B   C   Y
# TWO    A2  B2  C2  Y2
# THREE  A3  B3  C3  Y3

垂直连接(axis = 0)。

df_s_v = pd.concat([df1, s2])
print(df_s_v)
#          A    B    C    0
# ONE     A1   B1   C1  NaN
# TWO     A2   B2   C2  NaN
# THREE   A3   B3   C3  NaN
# TWO    NaN  NaN  NaN   Y2
# THREE  NaN  NaN  NaN   Y3
# FOUR   NaN  NaN  NaN   Y4

添加行,可以在.loc中指定新的行名称并分配值,或使用append()方法。

df1.loc['FOUR'] = ['A4', 'B4', 'C4']
print(df1)
#         A   B   C
# ONE    A1  B1  C1
# TWO    A2  B2  C2
# THREE  A3  B3  C3
# FOUR   A4  B4  C4

s = pd.Series(['A5', 'B5', 'C5'], index=df1.columns, name='FIVE')
print(s)
# A    A5
# B    B5
# C    C5
# Name: FIVE, dtype: object

df_append = df1.append(s)
print(df_append)
#         A   B   C
# ONE    A1  B1  C1
# TWO    A2  B2  C2
# THREE  A3  B3  C3
# FOUR   A4  B4  C4
# FIVE   A5  B5  C5

到此这篇关于Pandas.concat连接DataFrame,Series的示例代码的文章就介绍到这了,更多相关Pandas concat连接内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯