文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

利用概率学实现组合优化层,新研究构建Julia开源包InferOpt.jl

2024-12-01 17:47

关注

机器学习 (ML) 和组合优化 (CO) 是现代工业流程的两个重要组成部分。ML 方法能从嘈杂的数据中提取有意义的信息,而 CO 可以在高维受限环境中做出决策。在许多情况下,我们希望将这两种工具结合使用,例如从数据中生成预测,然后使用这些预测做出优化决策。因此,混合 ML-CO pipeline 成为一个新兴的研究方向。

然而这里存在两个问题。首先,CO 问题的解通常表现为其目标参数的分段常函数,而 ML pipeline 通常使用随机梯度下降进行训练,因此斜率是非常关键的。其次,标准的 ML 损失在组合环境中效果不佳。

此外,组合优化层(CO 层)往往缺乏良好的实现。近日一项新研究从概率学的角度提出了实现 CO 层的方法,有助于近似微分和结构化损失的构建。

论文地址:https://arxiv.org/abs/2207.13513

基于这种思路,该研究提出了一个开源的 Julia 包——InferOpt.jl,它的功能包括:

​InferOpt.jl 开源包地址:https://github.com/axelparmentier/inferopt.jl

InferOpt.jl 适用于任意优化算法,并且与 Julia 的 ML 生态系统完全兼容。研究团队使用视频游戏的地图寻路问题来展示它的能力。

推理问题的关键是预测给定输入的输出,这需要了解每个 ML 层的参数。而学习问题旨在找到在推理过程中导致「良好」输出的参数。如下等式 (1) 所示,现有的「CO oracle」代表可以解决优化问题的算法,包括基于求解器和手工的算法。

而层的定义是指我们可以使用自动微分 (AD) 计算有意义的导数,但现有 CO oracle 很少与 AD 兼容,并且导数几乎处处为零,没有可利用的斜率信息。​

因此,此前 CO oracle 还不是层,该研究的重点就是利用概率学的知识将其变成一个层。现代 ML 库提供了丰富的基本构建块,允许用户组装和训练复杂的 pipeline。该研究试图利用这些库来创建混合 ML-CO pipeline,并主要解决了两个问题:

​ 感兴趣的读者可以阅读论文原文,了解更多研究细节。​

来源:机器之心内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯