文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

深入探讨Redis数据结构

2024-11-30 02:40

关注

Redis没有直接使用C语言中的字符串,因为C语言字符串存在很多问题:

图片

那么Redis将在底层创建两个SDS,其中一个是包含“name”的SDS,另一个是包含“虎哥”的SDS。

Redis是C语言实现的,其中SDS是一个结构体,源码如下:

图片

例如,一个包含字符串“name”的sds结构如下:

图片

SDS之所以叫做动态字符串,是因为它具备动态扩容的能力,例如一个内容为“hi”的SDS:

图片

假如我们要给SDS追加一段字符串“,Amy”,这里首先会申请新内存空间:

图片

2. Redis数据结构-intset

IntSet是Redis中set集合的一种实现方式,基于整数数组来实现,并且具备长度可变、有序等特征。结构如下:

图片

其中的encoding包含三种模式,表示存储的整数大小不同:

图片

为了方便查找,Redis会将intset中所有的整数按照升序依次保存在contents数组中,结构如图:

图片

现在,数组中每个数字都在int16_t的范围内,因此采用的编码方式是INTSET_ENC_INT16,每部分占用的字节大小为:encoding:4字节 length:4字节 contents:2字节 * 3  = 6字节

图片

我们向该其中添加一个数字:50000,这个数字超出了int16_t的范围,intset会自动升级编码方式到合适的大小。以当前案例来说流程如下:

图片

源码如下:

图片

图片

小总结:

Intset可以看做是特殊的整数数组,具备一些特点:

1.3. Redis数据结构-Dict

我们知道Redis是一个键值型(Key-Value Pair)的数据库,我们可以根据键实现快速的增删改查。而键与值的映射关系正是通过Dict来实现的

Dict由三部分组成:

图片

当我们向Dict添加键值对时,Redis首先根据key计算出hash值(h),然后利用 h & sizemask来计算元素应该存储到数组中的哪个索引位置。我们存储k1=v1,假设k1的哈希值h =1,则1&3 =1,因此k1=v1要存储到数组角标1位置。

图片

Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)

图片

图片

Dict的扩容

Dict中的HashTable就是数组结合单向链表的实现,当集合中元素较多时,必然导致哈希冲突增多,链表过长,则查询效率会大大降低。Dict在每次新增键值对时都会检查负载因子(LoadFactor = used/size) ,满足以下两种情况时会触发哈希表扩容:

图片

Dict的rehash

不管是扩容还是收缩,必定会创建新的哈希表,导致哈希表的size和sizemask变化,而key的查询与sizemask有关。因此必须对哈希表中的每一个key重新计算索引,插入新的哈希表,这个过程称为rehash。过程是这样的:

整个过程可以描述成:

图片

小总结:

Dict的结构:

Dict的伸缩:

4. Redis数据结构-ZipList

ZipList 是一种特殊的“双端链表” ,由一系列特殊编码的连续内存块组成。可以在任意一端进行压入/弹出操作, 并且该操作的时间复杂度为 O(1)。

图片

图片

属性

类型

长度

用途

zlbytes

uint32_t

4 字节

记录整个压缩列表占用的内存字节数

zltail

uint32_t

4 字节

记录压缩列表表尾节点距离压缩列表的起始地址有多少字节,通过这个偏移量,可以确定表尾节点的地址。

zllen

uint16_t

2 字节

记录了压缩列表包含的节点数量。最大值为UINT16_MAX (65534),如果超过这个值,此处会记录为65535,但节点的真实数量需要遍历整个压缩列表才能计算得出。

entry

列表节点

不定

压缩列表包含的各个节点,节点的长度由节点保存的内容决定。

zlend

uint8_t

1 字节

特殊值 0xFF (十进制 255 ),用于标记压缩列表的末端。

ZipListEntry

ZipList 中的Entry并不像普通链表那样记录前后节点的指针,因为记录两个指针要占用16个字节,浪费内存。而是采用了下面的结构:

图片

ZipList中所有存储长度的数值均采用小端字节序,即低位字节在前,高位字节在后。例如:数值0x1234,采用小端字节序后实际存储值为:0x3412

Encoding编码

ZipListEntry中的encoding编码分为字符串和整数两种:字符串:如果encoding是以“00”、“01”或者“10”开头,则证明content是字符串

编码

编码长度

字符串大小

|00pppppp|

1 bytes

<= 63 bytes

|01pppppp|qqqqqqqq|

2 bytes

<= 16383 bytes

|10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt|

5 bytes

<= 4294967295 bytes

例如,我们要保存字符串:“ab”和 “bc”

图片

ZipListEntry中的encoding编码分为字符串和整数两种:

编码

编码长度

整数类型

11000000

1

int16_t(2 bytes)

11010000

1

int32_t(4 bytes)

11100000

1

int64_t(8 bytes)

11110000

1

24位有符整数(3 bytes)

11111110

1

8位有符整数(1 bytes)

1111xxxx

1

直接在xxxx位置保存数值,范围从0001~1101,减1后结果为实际值

图片

图片

5. Redis数据结构-ZipList的连锁更新问题

ZipList的每个Entry都包含previous_entry_length来记录上一个节点的大小,长度是1个或5个字节:如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值 如果前一节点的长度大于等于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe,后四个字节才是真实长度数据 现在,假设我们有N个连续的、长度为250~253字节之间的entry,因此entry的previous_entry_length属性用1个字节即可表示,如图所示:

图片

ZipList这种特殊情况下产生的连续多次空间扩展操作称之为连锁更新(Cascade Update)。新增、删除都可能导致连锁更新的发生。

小总结:

ZipList特性:

6. Redis数据结构-QuickList

问题1:ZipList虽然节省内存,但申请内存必须是连续空间,如果内存占用较多,申请内存效率很低。怎么办?

答:为了缓解这个问题,我们必须限制ZipList的长度和entry大小。

问题2:但是我们要存储大量数据,超出了ZipList最佳的上限该怎么办?

答:我们可以创建多个ZipList来分片存储数据。

问题3:数据拆分后比较分散,不方便管理和查找,这多个ZipList如何建立联系?

答:Redis在3.2版本引入了新的数据结构QuickList,它是一个双端链表,只不过链表中的每个节点都是一个ZipList。

图片

为了避免QuickList中的每个ZipList中entry过多,Redis提供了一个配置项:list-max-ziplist-size来限制。如果值为正,则代表ZipList的允许的entry个数的最大值 如果值为负,则代表ZipList的最大内存大小,分5种情况:

其默认值为 -2:

图片

以下是QuickList的和QuickListNode的结构源码:

图片

我们接下来用一段流程图来描述当前的这个结构

图片

总结:

QuickList的特点:

7. Redis数据结构-SkipList

SkipList(跳表)首先是链表,但与传统链表相比有几点差异:

图片

SkipList(跳表)首先是链表,但与传统链表相比有几点差异:元素按照升序排列存储 节点可能包含多个指针,指针跨度不同。

图片

SkipList(跳表)首先是链表,但与传统链表相比有几点差异:元素按照升序排列存储 节点可能包含多个指针,指针跨度不同。

图片

小总结:

SkipList的特点:

8. Redis数据结构-RedisObject

Redis中的任意数据类型的键和值都会被封装为一个RedisObject,也叫做Redis对象,源码如下:

什么是redisObject:从Redis的使用者的角度来看,⼀个Redis节点包含多个database(非cluster模式下默认是16个,cluster模式下只能是1个),而一个database维护了从key space到object space的映射关系。这个映射关系的key是string类型,⽽value可以是多种数据类型,比如:string, list, hash、set、sorted set等。我们可以看到,key的类型固定是string,而value可能的类型是多个。⽽从Redis内部实现的⾓度来看,database内的这个映射关系是用⼀个dict来维护的。dict的key固定用⼀种数据结构来表达就够了,这就是动态字符串sds。而value则比较复杂,为了在同⼀个dict内能够存储不同类型的value,这就需要⼀个通⽤的数据结构,这个通用的数据结构就是robj,全名是redisObject。

图片

Redis的编码方式

Redis中会根据存储的数据类型不同,选择不同的编码方式,共包含11种不同类型:

编号

编码方式

说明

0

OBJ_ENCODING_RAW

raw编码动态字符串

1

OBJ_ENCODING_INT

long类型的整数的字符串

2

OBJ_ENCODING_HT

hash表(字典dict)

3

OBJ_ENCODING_ZIPMAP

已废弃

4

OBJ_ENCODING_LINKEDLIST

双端链表

5

OBJ_ENCODING_ZIPLIST

压缩列表

6

OBJ_ENCODING_INTSET

整数集合

7

OBJ_ENCODING_SKIPLIST

跳表

8

OBJ_ENCODING_EMBSTR

embstr的动态字符串

9

OBJ_ENCODING_QUICKLIST

快速列表

10

OBJ_ENCODING_STREAM

Stream流

五种数据结构

Redis中会根据存储的数据类型不同,选择不同的编码方式。每种数据类型的使用的编码方式如下:

数据类型

编码方式

OBJ_STRING

int、embstr、raw

OBJ_LIST

LinkedList和ZipList(3.2以前)、QuickList(3.2以后)

OBJ_SET

intset、HT

OBJ_ZSET

ZipList、HT、SkipList

OBJ_HASH

ZipList、HT

9. Redis数据结构-String

String是Redis中最常见的数据存储类型:

其基本编码方式是RAW,基于简单动态字符串(SDS)实现,存储上限为512mb。

如果存储的SDS长度小于44字节,则会采用EMBSTR编码,此时object head与SDS是一段连续空间。申请内存时

只需要调用一次内存分配函数,效率更高。

String的内部存储结构⼀般是sds(Simple Dynamic String,可以动态扩展内存),但是如果⼀个String类型的value的值是数字,那么Redis内部会把它转成long类型来存储,从⽽减少内存的使用。

图片

如果存储的字符串是整数值,并且大小在LONG_MAX范围内,则会采用INT编码:直接将数据保存在RedisObject的ptr指针位置(刚好8字节),不再需要SDS了

图片

图片

图片

确切地说,String在Redis中是⽤⼀个robj来表示

用来表示String的robj可能编码成3种内部表⽰:

其中前两种编码使⽤的是sds来存储,最后⼀种OBJ_ENCODING_INT编码直接把string存成了long型。在对string进行incr, decr等操作的时候,如果它内部是OBJ_ENCODING_INT编码,那么可以直接行加减操作;如果它内部是OBJ_ENCODING_RAW或OBJ_ENCODING_EMBSTR编码,那么Redis会先试图把sds存储的字符串转成long型,如果能转成功,再进行加减操作。对⼀个内部表示成long型的string执行append, setbit, getrange这些命令,针对的仍然是string的值(即⼗进制表示的字符串),而不是针对内部表⽰的long型进⾏操作。比如字符串”32”,如果按照字符数组来解释,它包含两个字符,它们的ASCII码分别是0x33和0x32。当我们执行命令setbit key 7 0的时候,相当于把字符0x33变成了0x32,这样字符串的值就变成了”22”。⽽如果将字符串”32”按照内部的64位long型来解释,那么它是0x0000000000000020,在这个基础上执⾏setbit位操作,结果就完全不对了。因此,在这些命令的实现中,会把long型先转成字符串再进行相应的操作。

10. Redis数据结构-List

Redis的List类型可以从首、尾操作列表中的元素:

图片

哪一个数据结构能满足上述特征?

Redis的List结构类似一个双端链表,可以从首、尾操作列表中的元素:

在3.2版本之前,Redis采用ZipList和LinkedList来实现List,当元素数量小于512并且元素大小小于64字节时采用ZipList编码,超过则采用LinkedList编码。

在3.2版本之后,Redis统一采用QuickList来实现List:

图片

10.1 Redis数据结构-Set结构

Set是Redis中的单列集合,满足下列特点:

图片

可以看出,Set对查询元素的效率要求非常高

思考一下,什么样的数据结构可以满足?

HashTable,也就是Redis中的Dict,不过Dict是双列集合(可以存键、值对)

Set是Redis中的集合,不一定确保元素有序,可以满足元素唯一、查询效率要求极高。为了查询效率和唯一性,set采用HT编码(Dict)。Dict中的key用来存储元素,value统一为null。当存储的所有数据都是整数,并且元素数量不超过set-max-intset-entries时,Set会采用IntSet编码,以节省内存

图片

结构如下:

图片

10.2 Redis数据结构-ZSET

ZSet也就是SortedSet,其中每一个元素都需要指定一个score值和member值:

图片

因此,zset底层数据结构必须满足键值存储、键必须唯一、可排序这几个需求。之前学习的哪种编码结构可以满足?

图片

图片

当元素数量不多时,HT和SkipList的优势不明显,而且更耗内存。因此zset还会采用ZipList结构来节省内存,不过需要同时满足两个条件:

ziplist本身没有排序功能,而且没有键值对的概念,因此需要有zset通过编码实现:

图片

图片

10.3. Redis数据结构-Hash

Hash结构与Redis中的Zset非常类似:

区别如下:

(1)底层实现方式:压缩列表ziplist 或者 字典dict 当Hash中数据项比较少的情况下,Hash底层才⽤压缩列表ziplist进⾏存储数据,随着数据的增加,底层的ziplist就可能会转成dict,具体配置如下:

当满足上面两个条件其中之⼀的时候,Redis就使⽤dict字典来实现hash。Redis的hash之所以这样设计,是因为当ziplist变得很⼤的时候,它有如下几个缺点:

总之,ziplist本来就设计为各个数据项挨在⼀起组成连续的内存空间,这种结构并不擅长做修改操作。⼀旦数据发⽣改动,就会引发内存realloc,可能导致内存拷贝。

hash结构如下:

图片

zset集合如下:

图片

因此,Hash底层采用的编码与Zset也基本一致,只需要把排序有关的SkipList去掉即可:

Hash结构默认采用ZipList编码,用以节省内存。ZipList中相邻的两个entry 分别保存field和value

当数据量较大时,Hash结构会转为HT编码,也就是Dict,触发条件有两个:

图片

来源:springboot葵花宝典内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯