文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何使用Python+ChatGPT批量生成论文

2023-02-27 11:20

关注

用Python+ChatGPT批量生成论文概述

做算法研究离不开阅读大量论文。从海量论文中找到需要的论文往往耗费算法团队不少的精力。

ChatGPT官方例子中有一个“TL;DR”摘要生成,非常适合生成论文摘要。

在这里插入图片描述

于是我用python+GPT-3 API开发了一个工具,可以直接从arxiv地址生成论文概述。实现步骤如下:

下载论文

第一步,我们要先拿到论文正文。

从arxiv上下载论文非常简单,如果你知道论文编号(比如2302.08996),那么论文的pdf下载地址为:https://arxiv.org/pdf/[论文编号].pdf。我们只需要发起网络请求即可将论文下载到本地。

我这里使用requests库发起网络请求,你可以使用任何你喜欢库完成论文下载。

def download_paper(paper_id: str, file_name: Optional[str] = None) -> Optional[str]:
    """ 根据论文id将论文下载到本地

    Parameters
    -----------
    paper_id: str
        论文id
    file_name: Optional[str]
        本地文件名,如果为空则用论文id做文件名

    Returns
    -------
    result: Optional[str]
        论文下载结果。成功则返回本地文件路径,失败则返回None
    """
    paper_url = f"https://arxiv.org/pdf/{paper_id}.pdf"
    if not file_name:
        file_name = f"{paper_id}.pdf"

    res = requests.get(url=paper_url)
    if res.status_code == 200:
        with open(file_name, "wb") as f:
            f.write(res.content)
            return file_name
    return None

pdf转文本

ChatGPT只接受文本输入,所以拿到论文后,我们需要将pdf格式的论文转换为纯文本。这里给大家推荐一个好用的pdf转文本库——pdfplumber

pdfplumber使用非常简单,只要打开文件,即可通过pdfplumber.pages获取到每一页pdf内容。然后调用pdfplumber.Page类的extract_text()方法就能提取页面的文本。示例代码如下:

def pdf2txt(file_name: str | pdfplumber.PDF, page_start: int, page_end: int) -> str:
    """

    Parameters
    -----------
    file_name: str | pdfplumber.PDF
        pdf文件路径或pdfplumber.PDF实例
    page_start: int
        要转换的起始页页码
    page_end: int
        要转换的结束页页码

    Returns
    -------
    content: str
        转换后的文本
    """
    content = ""
    if isinstance(file_name, str):
        pages = pdfplumber.open(file_name).pages
    elif isinstance(file_name, pdfplumber.PDF):
        pages = file_name.pages
    else:
        raise AttributeError("需要传入pdf路径或PDF对象")
    for page in pages[page_start:page_end]:
        content += page.extract_text()
    return content

上面的代码会逐页提取给定pdf文档指定页码范围内的内容并返回。

用GPT-3生成概述

有了文本,我们就可以用ChatGPT来生成概述了。

首先我们导入openai库,并配置好参数:

import openai

openai.api_key = "YOUR_API_KEY"

TLDRParameter = {
    "model": "text-davinci-003",
    "max_tokens": 2048,
    "temperature": 0.3,
    "top_p": 1.0,
    "frequency_penalty": 0.0,
    "presence_penalty": 0.0,
    "stop": ["\n\n"]
}

tldr_tag = "\n\n tl;dr:" # 给ChatGPT明确的文本补全意图

这里的tldr_tag需要稍微解释一下,这段字符串会添加在我们论文文本的末尾,用于提示ChatGPT我们要做的是上面文本的摘要。为了让ChatGPT能够将论文内容和我们给出的提示区分开来,在参数中我们设置了stop,用于告诉ChatGPT输入到哪里结束。

输出概述

ChatGPT对输入长度是有限制的,因此我们不能一次性将整个论文内容输入进去,需要一页一页得输入并生成每一页的概述。

pages = pdfplumber.open(file_name).pages
for p in pages:
    content = p.extract_text() + tldr_tag
    response = openai.Completion.create(prompt=content, **TLDRParameter)
    print(f"Page1 {index + 1}:\n")
    print(response["choices"][0]["text"])
    print("\n\n")

集成测试

将上面的代码集成到一起,我们就可以得到一个完整可用的论文概述工具

import requests
import pdfplumber
import openai
from typing import Optional

openai.api_key = "YOUR_API_KEY"

TLDRParameter = {
    "model": "text-davinci-003",
    "max_tokens": 2048,
    "temperature": 0.3,
    "top_p": 1.0,
    "frequency_penalty": 0.0,
    "presence_penalty": 0.0,
    "stop": ["\n"]
}

tldr_tag = "\ntl;dr:"


def download_paper(paper_id: str, file_name: Optional[str] = None) -> Optional[str]:
    """ 根据论文id将论文下载到本地

    Parameters
    -----------
    paper_id: str
        论文id
    file_name: Optional[str]
        本地文件名,如果为空则用论文id做文件名

    Returns
    -------
    result: Optional[str]
        论文下载结果。成功则返回本地文件路径,失败则返回None
    """
    paper_url = f"https://arxiv.org/pdf/{paper_id}.pdf"
    if not file_name:
        file_name = f"{paper_id}.pdf"

    res = requests.get(url=paper_url)
    if res.status_code == 200:
        with open(file_name, "wb") as f:
            f.write(res.content)
            return file_name
    return None


if __name__ == '__main__':
    file_name = download_paper('2302.08996')
    pages = pdfplumber.open(file_name).pages
    for index, page in enumerate(pages):
        content = page.extract_text() + tldr_tag
        response = openai.Completion.create(prompt=content, **TLDRParameter)
        print(f"Page {index + 1}:\n")
        print(response["choices"][0]["text"])
        print("\n\n")

我用最新发出的2302.08996做测试,输出如下:

Page 1:

 We employ meta reinforcement learning to model short-duration trading in financial markets as a sequential decision-making problem. We incorporate symbolic features based on frequently occurring patterns in price series to improve the performance of our meta-RL algorithm. Preliminary results on real data indicate that meta-RL and logical features are more effective than vanilla RL or primary price features alone.
Page 2:
 Meta-learning techniques, such as Inductive Logic Programming (ILP) and RL2, can be used to train a trading agent on a new task with limited data.
Page 3:
 We propose a meta-RL agent that can rapidly adapt to new reward patterns. We use PPO to train the agent and an LSTM agent. We also use hand-crafted features and learned logical features to augment the agent's neural network model. Results show that the agent outperforms vanilla reinforcement learning.
Page 4:

上面每一页的输出都很好地概括了该页的核心内容,其中第四页为空是因为这一页绝大部分内容是参考文献,ChatGPT也很聪明的没有返回概述。

总结

试用了一天,我认为模型对论文总结得很棒,用这个工具读起论文来效率大增。尽管它永远可能取代实际阅读整篇论文的重要过程,但却可以作为探索发现更广泛有趣科学的工具。

这篇文章更多的是一个概念的证明,如果想大规模用于生产还有很多细节要处理,比如pdf转换的文本的格式,按页转换文本带来得章节错位等问题。然而,我觉得这些问题都可以解决。在ChatGPT的加持下,我认为我们比以往任何时候都更高效地处理更多科学信息。

到此这篇关于用Python+ChatGPT批量生成论文的文章就介绍到这了,更多相关Python+ChatGPT批量生成论文内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯