文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

loss.item()用法和注意事项详解

2023-10-26 12:04

关注

.item()方法是,取一个元素张量里面的具体元素值并返回该值,可以将一个零维张量转换成int型或者float型,在计算loss,accuracy时常用到。

作用:

item()取出张量具体位置的元素元素值
2.并且返回的是该位置元素值的高精度值
3.保持原元素类型不变;必须指定位置

节省内存(不会计入计算图)

import torchloss = torch.randn(2, 2)print(loss)print(loss[1,1])print(loss[1,1].item())

输出结果

tensor([[-2.0274, -1.5974],
        [-1.4775,  1.9320]])
tensor(1.9320)
1.9319512844085693



其它:

loss = criterion(out, label)    loss_sum += loss     # <--- 这里

运行着就发现显存炸了,观察发现随着每个batch显存消耗在不断增大…因为输出的loss的数据类型是Variable。PyTorch的动态图机制就是通过Variable来构建图。主要是使用Variable计算的时候,会记录下新产生的Variable的运算符号,在反向传播求导的时候进行使用。如果这里直接将loss加起来,系统会认为这里也是计算图的一部分,也就是说网络会一直延伸变大,那么消耗的显存也就越来越大。

正确的loss一般是这样写 

loss_sum += loss.data[0]

其它注意事项:

使用loss += loss.detach()来获取不需要梯度回传的部分。

使用loss.item()直接获得对应的python数据类型


补充阅读,pytorch 计算图

Pytorch的计算图由节点和边组成,节点表示张量或者Function,边表示张量和Function之间的依赖关系。

Pytorch中的计算图是动态图。这里的动态主要有两重含义。

第一层含义是:计算图的正向传播是立即执行的。无需等待完整的计算图创建完毕,每条语句都会在计算图中动态添加节点和边,并立即执行正向传播得到计算结果。

第二层含义是:计算图在反向传播后立即销毁。下次调用需要重新构建计算图。如果在程序中使用了backward方法执行了反向传播,或者利用torch.autograd.grad方法计算了梯度,那么创建的计算图会被立即销毁,释放存储空间,下次调用需要重新创建。

1,计算图的正向传播是立即执行的。

import torch w = torch.tensor([[3.0,1.0]],requires_grad=True)b = torch.tensor([[3.0]],requires_grad=True)X = torch.randn(10,2)Y = torch.randn(10,1)Y_hat = X@w.t() + b  # Y_hat定义后其正向传播被立即执行,与其后面的loss创建语句无关loss = torch.mean(torch.pow(Y_hat-Y,2))print(loss.data)print(Y_hat.data)
tensor(17.8969)tensor([[3.2613],        [4.7322],        [4.5037],        [7.5899],        [7.0973],        [1.3287],        [6.1473],        [1.3492],        [1.3911],        [1.2150]])

2,计算图在反向传播后立即销毁。

import torch w = torch.tensor([[3.0,1.0]],requires_grad=True)b = torch.tensor([[3.0]],requires_grad=True)X = torch.randn(10,2)Y = torch.randn(10,1)Y_hat = X@w.t() + b  # Y_hat定义后其正向传播被立即执行,与其后面的loss创建语句无关loss = torch.mean(torch.pow(Y_hat-Y,2))#计算图在反向传播后立即销毁,如果需要保留计算图, 需要设置retain_graph = Trueloss.backward()  #loss.backward(retain_graph = True) #loss.backward() #如果再次执行反向传播将报错

参考链接:pytorch学习:loss为什么要加item()_dlvector的博客-CSDN博客_loss.item()

https://blog.csdn.net/cs111211/article/details/126221102

来源地址:https://blog.csdn.net/Viviane_2022/article/details/128379670

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯