文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python中常用探索性数据分析方法有哪些

2023-06-25 16:05

关注

这篇文章主要介绍了Python中常用探索性数据分析方法有哪些,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

常用探索性数据分析方法很多,比如常用的 Pandas DataFrame 方法有 .head()、.tail()、.info()、.describe()、.plot() 和 .value_counts()。

import pandas as pdimport numpy as npdf = pd.DataFrame( {     "Student" : ["Mike", "Jack", "Diana", "Charles", "Philipp", "Charles", "Kale", "Jack"] ,           "City" : ["London", "London", "Berlin", "London", "London", "Berlin", "London", "Berlin"] ,"Age" : [20, 40, 18, 24, 37, 40, 44, 20 ],"Maths_Score" : [84, 80, 50, 36, 44, 24, 41, 35],"Science_Score" : [66, 83, 51, 35, 43, 58, 71, 65]} ) df

在 Pandas 中创建 groupby() 对象

在许多情况下,我们希望将数据集拆分为多个组并对这些组进行处理。 Pandas 方法 groupby() 用于将 DataFrame 中的数据分组。

与其一起使用 groupby() 和聚合方法,不如创建一个 groupby() 对象。 理想的情况是,我们可以在需要时直接使用此对象。

让我们根据列“City”将给定的 DataFrame 分组

df_city_group = df.groupby("City")

我们创建一个对象 df_city_group,该对象可以与不同的聚合相结合,例如 min()、max()、mean()、describe() 和 count()。 一个例子如下所示。

Python中常用探索性数据分析方法有哪些


要获取“City”是Berlin的 DataFrame 子集,只需使用方法 .get_group()

Python中常用探索性数据分析方法有哪些


这不需要为每个组创建每个子 DataFrame 的副本,比较节省内存。

另外,使用 .groupby() 进行切片比常规方法快 2 倍!!

Python中常用探索性数据分析方法有哪些

使用 .nlargest()

通常,我们根据特定列的值了解 DataFrame 的 Top 3 或 Top 5 数据。例如,从考试中获得前 3 名得分者或从数据集中获得前 5 名观看次数最多的电影。使用 Pandas .nlargest() 是最简单的方式。

df.nlargest(N, column_name, keep = ‘first' )

使用 .nlargest() 方法,可以检索包含指定列的 Top ‘N' 值的 DataFrame 行。

在上面的示例中,让我们获取前 3 个“Maths_Score”的 DataFrame 的行。

Python中常用探索性数据分析方法有哪些

如果两个值之间存在联系,则可以修改附加参数和可选参数。 它需要值“first”、“last”和“all”来检索领带中的第一个、最后一个和所有值。这种方法的优点是,你不需要专门对 DataFrame 进行排序。

使用 .nsmallest()

与Top 3 或5 类似,有时我们也需要DataFrame 中的Last 5 条记录。例如,获得评分最低的 5 部电影或考试中得分最低的 5 名学生。使用 Pandas .nsmallest() 是最简单的方式

df.nsmallestst(N, column_name, keep = ‘first' )

使用 .nsmallest() 方法,可以检索包含指定列的底部“N”个值的 DataFrame 行。

在同一个示例中,让我们获取 DataFrame“df”中“Maths_Score”最低的 3 行。

Python中常用探索性数据分析方法有哪些

逻辑比较

比较运算符 <、>、<=、>=、==、!= 及其包装器 .lt()、.gt()、.le()、.ge()、.eq() 和 .ne() 分别在以下情况下非常方便将 DataFrame 与基值进行比较,这种比较会产生一系列布尔值,这些值可用作以后的指标。

所有这些场景都在下面的示例中进行了解释

# 1. Comparing the DataFrame to a base value# Selecting the columns with numerical values onlydf.iloc[:,2:5].gt(50)df.iloc[:,2:5].lt(50)# 2. Slicing the DataFrame based on comparison# df1 is subset of df when values in "Maths_Score" column are not equal or equal to '35'df1 = df[df["Maths_Score"].ne(35)]df2 = df[df["Maths_Score"].eq(35)]# 3. Creating new column of True-False values by comparing two columnsdf["Maths_Student"] = df["Maths_Score"].ge(df["Science_Score"])df["Maths_Student_1"] = df["Science_Score"].le(df["Maths_Score"])

感谢你能够认真阅读完这篇文章,希望小编分享的“Python中常用探索性数据分析方法有哪些”这篇文章对大家有帮助,同时也希望大家多多支持编程网,关注编程网行业资讯频道,更多相关知识等着你来学习!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯