文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

clickhouse 批量插入数据及ClickHouse常用命令详解

2024-04-02 19:55

关注

一.安装使用

ClickHouse是Yandex提供的一个开源的列式存储数据库管理系统,多用于联机分析(OLAP)场景,可提供海量数据的存储和分析,同时利用其数据压缩和向量化引擎的特性,能提供快速的数据搜索。

3a805953e098d3543b0553e4e76efb97.gif

Ⅰ).安装

sudo yum install yum-utils
sudo rpm --import https://repo.yandex.ru/clickhouse/CLICKHOUSE-KEY.GPG
sudo yum-config-manager --add-repo https://repo.yandex.ru/clickhouse/rpm/stable/x86_64
sudo yum install clickhouse-server clickhouse-client
sudo /etc/init.d/clickhouse-server start
clickhouse-client

Ⅱ).配置

a).clickhouse-server

CLICKHOUSE_USER=username
 
CLICKHOUSE_LOGDIR=${CLICKHOUSE_HOME}/log/clickhoue-server
CLICKHOUSE_LOGDIR_USER=username
CLICKHOUSE_DATADIR_OLD=${CLICKHOUSE_HOME}/data/old
CLICKHOUSE_DATADIR=${CLICKHOUSE_HOME}/data

b).config.xml

... ...
  <!-- 配置日志参数 -->
  <logger>
    <level>info</level>
    <log>${CLICKHOUSE_HOME}/log/clickhoue-server/clickhoue-server.log</log>
    <errorlog>${CLICKHOUSE_HOME}/log/clickhoue-server/clickhoue-server-error.log</errorlog>
    <size>100M</size>
    <count>5</count>
  </logger>
 
  <!-- 配置数据保存路径 -->
  <path>${CLICKHOUSE_HOME}</>
  <tmp_path>${CLICKHOUSE_HOME}/tmp</>
  <user_files_path>${CLICKHOUSE_HOME}/user_files</>
 
  <!-- 配置监听 -->
  <listen_host>::</listen_host>
 
  <!-- 配置时区 -->
  <timezone>Asiz/Shanghai</timezone>
... ...

Ⅲ).启停服务

#### a).启动服务
sudo service clickhouse-server start
#### b).停止服务
sudo service clickhouse-server stop

Ⅳ).客户端访问

clickhouse-client

二.常用命令

Ⅰ).创建表

CREATE TABLE IF NOT EXISTS database.table_name ON cluster cluster_shardNum_replicasNum(
    'id' UInt64,
    'name' String,
    'time' UInt64,
    'age' UInt8,
    'flag' UInt8
)
ENGINE = MergeTree
PARTITION BY toDate(time/1000)
ORDER BY (id,name)
SETTINGS index_granularity = 8192

Ⅱ).创建物化视图

CREATE MATERIALIZED VIEW database.view_name ON cluster cluster_shardNum_replicasNum
ENGINE = AggregatingMergeTree
PARTITION BY toYYYYMMDD(time)
ORDER BY (id,name)
AS SELECT 
    toStartOfHour(toDateTime(time/1000)) as time,
    id,
    name,
    sumState( if (flag = 1, 1, 0)) AS successCount,
    sumState( if (flag = 0, 1, 0)) AS faildCount,
    sumState( if ((age < 10), 1, 0)) AS rang1Age,
    sumState( if ((age > 10) AND (age < 20), 2, 0)) AS rang2Age,
    sumState( if ((age > 20), 3, 0)) AS rang3Age,
    maxState(age) AS maxAge,
    minState(age) AS minAge
FROM datasource.table_name
GROUP BY time,id,name

Ⅲ).插入数据

a).普通数据插入

INSERT INTO database.table_name(id, name, age, flag) VALUES(1, 'test', 15, 0)

b).Json数据插入

INSERT INTO database.table_name FORMAT JSONEachRow{"id":"1", "name":"test", "age":"11", "flag":"1"}

Ⅳ).查询数据

a).表数据查询

SELECT * FROM database.table_name WHERE id=1

b).物化视图查询

SELECT id, name, sumMerge(successCount), sumMerge(faildCount), sumMerge(rang1Age), sumMerge(rang2Age), maxMerge(maxAge), minMerge(minAge) 
FROM database.view_name 
WHERE id=1
GROUP BY id, name

Ⅴ).创建NESTED表

CREATE TABLE IF NOT EXISTS database.table_name(
  'id' UInt64,
  'name' String,
  'time' UInt64,
  'age' UInt8,
  'flag' UInt8
nested_table_name Nested (
  sequence UInt32,
  id UInt64,
  name String,
  time UInt64,
  age UInt8,
  flag UInt8
  socketAddr String,
  socketRemotePort UInt32,
  socketLocalPort UInt32,
  eventTime UInt64,
  exceptionClassName String,
  hashCode Int32,
  nextSpanId UInt64
))
ENGINE = MergeTree
PARTITION BY toDate (time / 1000)
ORDER BY (id, name, time)
SETTINGS index_granularity = 8192

Ⅵ).NESTED表数据查询

SELECT table1.*,table1.id FROM nest.table_name AS table1 array JOIN nested_table_name AS table2

Ⅶ).配置字典项

<dictionaries>
  <dictionary>
    <name>url</name>  
    <source>
      <clickhouse>
        <host>hostname</host>  
        <port>9000</port>  
        <user>default</user>  
        <password/>  
        <db>dict</db>  
        <table>url_dict</table>
      </clickhouse>
    </source>  
    <lifetime>
      <min>30</min>  
      <max>36</max>
    </lifetime>  
    <layout>
      <hashed/>
    </layout>  
    <structure>
      <id>
        <name>id</name>
      </id>  
      <attribute>
        <name>hash_code</name>  
        <type>String</type>  
        <null_value/>
      </attribute>  
      <attribute>
        <name>url</name>  
        <type>String</type>  
        <null_value/>
      </attribute>
    </structure>
  </dictionary>  
  <dictionary>
    <name>url_hash</name>  
    <source>
      <clickhouse>
        <host>hostname</host>  
        <port>9000</port>  
        <user>default</user>  
        <password/>  
        <db>dict</db>  
        <table>url_hash</table>
      </clickhouse>
    </source>  
    <lifetime>
      <min>30</min>  
      <max>36</max>
    </lifetime>  
    <layout>
      <complex_key_hashed/>
    </layout>  
    <structure>
      <key>
        <attribute>
          <name>hash_code</name>  
          <type>String</type>
        </attribute>
      </key>  
      <attribute>
        <name>url</name>  
        <type>String</type>  
        <null_value/>
      </attribute>
    </structure>
  </dictionary>
</dictionaries>

Ⅷ).字典查询

SELECT
    id,
    dictGet('name', 'name', toUInt64(name)) AS name,
    dictGetString('url', 'url', tuple(url)) AS url
FROM table_name

Ⅸ).导入数据

clickhouse-client --query="INSERT INTO database.table_name FORMAT CSVWithNames" < /path/import_filename.csv

Ⅹ).导出数据

clickhouse-client --query="SELECT * FROM database.table_name FORMAT CSV" sed 's/"//g' > /path/export_filename.csv

Ⅺ).查看partition状态

SELECT table, name, partition,active FROM system.parts WHERE database='database_name'

Ⅻ).清理partition

ALTER TABLE database.table_name ON cluster cluster_shardNum_replicasNum detach partition 'partition_id'

XIII).查看列的压缩率

SELECT
    database,
    table,
    name,
    formatReadableSize(sum(data_compressed_bytes) AS c) AS comp,
    formatReadableSize(sum(data_uncompressed_bytes) AS r) AS raw,
    c/r AS comp_ratio
FROM system.columns
WHERE database='database_name'
    AND table='table_name'
GROUP BY name

XIV).查看物化视图的磁盘占用

clickhouse-client --query="SELECT partition,count(*) AS partition_num, formatReadableSize(sum(bytes)) AS disk_size FROM system.columns WHERE database='database_name' " --external --?le=***.sql --name=parts --structure='table String, name String, partition UInt64, engine String' -h hostname

到此这篇关于clickhouse 批量插入数据及ClickHouse常用命令的文章就介绍到这了,更多相关clickhouse 批量插入内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯