文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

用R语言绘制ROC曲线的实例讲解

2024-04-02 19:55

关注

1 roc曲线的意义

ROC曲线就是用来判断诊断的正确性,最理想的就是曲线下的面积为1,比较理想的状态就是曲线下的面积在0.8-0.9之间,0.5的话对实验结果没有什么影响。

如图:

2代码部分


install.packages(“pROC”)
install.packages(“ggplot2”)
library(pROC)
library(ggplot2)
#建立曲线
data(aSAH)
rocobj1<-roc(aSAHo u t c o m e , a S A H outcome,aSAHoutcome,aSAHs100b)
rocobj2<-roc(aSAHo u t c o m e , a S A H outcome,aSAHoutcome,aSAHwfns)
rocobj3<-roc(aSAHo u t c o m e , a S A H outcome,aSAHoutcome,aSAHndka)
#计算full AUC
auc(rocobj1)
auc(rocobj2)
auc(rocobj3)
#绘制曲线
plot(rocobj1)
#其他参数美化
plot(rocobj1,print.auc=TRUE,auc.polygon=TRUE,grid=c(0.1,0.2),grid.col=c(“green”,“red”),max.auc.polygon=TRUE,auc.polygon.col=“skyblue”,print.thres=TRUE)
#计算partial AUC选择关注一定范围数据
plot(rocobj1,print.auc=TRUE,auc.polygon=TRUE,partial.auc=c(0.8,0.4),partial.auc.focus=“sp”,grid=c(0.1,0.2),grid.col=c(“green”,“red”),max.auc.polygon=TRUE,auc.polygon.col=“skyblue”,print.thres=TRUE,reuse.auc=FALSE)
#比较两个曲线,pROC提供三种方法比较“delong”, “bootstrap”或“venkatraman”
roc.test(rocobj1,rocobj2,method = “bootstrap”)
#ggroc(功能仍在测试中)绘制Multiple curves
g3<-ggroc(list(s100b=rocobj,wfns=rocobj2,ndka=rocobj3))
g3
install.packages(“pROC”)
library(“pROC”)##roc
data(aSAH)
roc1<-roc(myDatal a b e l , m y D a t a label,myDatalabel,myDatascore)
roc2<-roc(myData2l a b e l , m y D a t a 2 label,myData2label,myData2score)
polt(roc1,col=“blue”)
polt.roc(roc2,add=TRUE,col=“red”)

3 实验结果

补充:R语言proc包绘制多重ROC曲线(信用评分应用,已有label和相应score)

数据:好坏标签label、用四种model简单计算出的每一个样本的score,标记为pre1至pre4,约1w样本

目的:使用proc包绘制ROC曲线,并生成AUC值

1.读入数据

data<-read.csv(file="D:/个人消费信用/第三次上机/工作簿2.csv",header=T)

header=T 即在读取中,将原有数据的第一行设置为变量名。

注意文件的分隔为 “ / ”,与默认不同。

2.画出最基本的ROC曲线


library(pROC) #加载pROC包
roc1<-roc(data$label,data$pre1)
plot(roc1,print.auc=TRUE,plot=TRUE,
print.thres=TRUE)

包含AUC的值和最优临界点,下面把它美化一下~

(问题:为啥横坐标Specificity的范围是1.5到-0.5,查了一下没有找到原因,可能是因为原数据本身的问题,以前以违约概率而非score的时候没有出现这个问题,择日探究……TvT)

3.美化ROC曲线


plot(roc2,print.auc=TRUE,print.auc.x=0.4,print.auc.y=0.4,auc.polygon=TRUE,auc.polygon.col="gray",
smooth=TRUE,
grid=c(0.5, 0.2),
grid.col=c("black", "black"), 
max.auc.polygon=TRUE,
print.thres=TRUE,print.thres.cex=0.8,
lty=1,main=" ROC曲线",mfrow=c(1,1)) 

解释在括号里面叠加命令的代码:


print.auc.x=0.4,print.auc.y=0.4 #设置AUC值显示出来的坐标
auc.polygon=TRUE,auc.polygon.col="gray" #设置ROC曲线下填充色,此处设定为灰色
smooth=TRUE #使ROC曲线变得光滑
max.auc.polygon=TRUE #整个图像填充
print.thres.cex=0.8 #设置最优临界点字体的大小
lty=1,main=" ROC曲线",mfrow=c(1,1) #设置标题啥的 mfrow貌似是图形参数,待查……

4.合并ROC曲线

由于共有4个model,所以要想比较模型的优劣,可以将四个ROC曲线画到一起。


roc1<- roc(data$label,data$pre1)
roc2<- roc(data$label,data$pre2)
roc3<- roc(data$label,data$pre3)
roc4<- roc(data$label,data$pre4)
plot(roc1, print.auc=TRUE,print.auc.x=0.4,print.auc.y=0.4, auc.polygon=TRUE,auc.polygon.col="gray", grid=c(0.5, 0.2),smooth=T,grid.col=c("black", "black"), max.auc.polygon=TRUE)
plot.roc(roc2,add=T,col="red", print.auc=TRUE,print.auc.x=0.3,print.auc.y=0.3)
plot.roc(roc3,add=T,col="blue",print.auc=TRUE,print.auc.x=0.5,print.auc.y=0.5)
plot.roc(roc4,add=T,col="yellow",print.auc=TRUE,print.auc.x=0.6,print.auc.y=0.6)

由于此处要显示AUC值,且不要重合~所以在后面加上了print.auc=TRUE,print.auc.x=0.6,print.auc.y=0.6的命令。

如果不重合的话,直接在roc1下面加上下列代码即可:


plot.roc(roc2,add=T,col="red")

由于原有数据的问题,这里的四条ROC曲线几乎重合~但此处只是介绍pROC包绘制ROC曲线的用法。就不要太在意辽!

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯