文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python+OpenCV编写车辆计数器系统

2024-04-02 19:55

关注

介绍

本文,我们将使用欧几里德距离跟踪和轮廓的概念在 Python 中使用 OpenCV 构建车辆计数器系统。

对象追踪

对象跟踪是在视频中定位移动对象的过程。在 OpenCV 中有多种技术可以执行对象跟踪。可以针对 2 种情况执行对象跟踪:

在这里,我们将执行多对象跟踪方法,因为我们在一个时间范围内有多辆车。

流行的追踪算法

DEEP SORT:它是最广泛使用和非常有效的目标跟踪算法之一,它适用于 YOLO 目标检测,使用卡尔曼滤波器进行跟踪。

质心跟踪算法:质心跟踪算法是一种易于理解且非常有效的算法。这是一个多步骤的过程。

步骤 1:获取检测到的对象的边界框坐标并使用边界框的坐标计算质心。

步骤 2:对于每个后续帧,它使用边界框坐标计算质心,并为这些边界框分配一个 id,并计算每个可能的质心之间的欧几里德距离。

步骤 3:我们的假设是给定对象可能会在后续帧中移动,并且它们质心之间的欧几里德距离将是与其他对象相比的最小距离。

步骤 4:将相同的 ID 分配给后续帧之间的最小移动质心。

为了检测任何运动物体,我们可以用 frame(t) 减去 frame(t+1)。

对象跟踪的应用

因为计算机不断增长的计算能力,对象跟踪变得越来越先进。对象跟踪有一些主要的用例。

实现欧几里得距离跟踪器

本文使用的所有代码的源文件和测试视频都可以通过这个链接下载

上面讨论的所有步骤都可以使用一些数学计算来执行

我们已经建立了一个名为EuclideanDistTracker对象跟踪的类。

import math
class EuclideanDistTracker:
    def __init__(self):
        # Storing the positions of center of the objects
        self.center_points = {}
        # Count of ID of boundng boxes
        # each time new object will be captured the id will be increassed by 1
        self.id_count = 0
    def update(self, objects_rect):
        objects_bbs_ids = []
        # Calculating the center of objects
        for rect in objects_rect:
            x, y, w, h = rect
            center_x = (x + x + w) // 2
            center_y = (y + y + h) // 2
            # Find if object is already detected or not
            same_object_detected = False
            for id, pt in self.center_points.items():
                dist = math.hypot(center_x - pt[0], center_y - pt[1])
                if dist < 25:
                    self.center_points[id] = (center_x, center_y)
                    print(self.center_points)
                    objects_bbs_ids.append([x, y, w, h, id])     
                    same_object_detected = True
                    break
           # Assign the ID to the detected object
           if same_object_detected is False:
               self.center_points[self.id_count] = (center_x, center_y)                      
               objects_bbs_ids.append([x, y, w, h, self.id_count])       
               self.id_count += 1
        # Cleaning the dictionary ids that are not used anymore
        new_center_points = {}
        for obj_bb_id in objects_bbs_ids:
            var,var,var,var, object_id = obj_bb_id
            center = self.center_points[object_id]
            new_center_points[object_id] = center
       # Updating the dictionary with IDs that is not used
       self.center_points = new_center_points.copy()
       return objects_bbs_ids

你可以创建一个名为tracker.py并粘贴跟踪器代码的文件,也可以使用此链接直接下载跟踪器文件。

在准备好跟踪器文件后,我们需要实现我们的目标检测器,稍后我们将我们的跟踪器与目标检测器绑定。

加载库和视频

从我们已经创建的 tracker.py 文件中导入我们的 EuclideanDistTracker 类。

import cv2
import numpy as np
from tracker import EuclideanDistTracker
tracker = EuclideanDistTracker()
cap  = cv2.VideoCapture('highway.mp4')
ret, frame1 = cap.read()
ret, frame2 = cap.read()

cap.read()它返回帧和布尔值,我们需要捕获帧。

在OpenCV中获取视频帧

这个想法是获得两个后续帧之间的绝对差,以便检测移动对象。

while cap.isOpened():
    # ret, frame = cap.read()
    diff = cv2.absdiff(frame1, frame2)  
    # this method is used to find the difference bw two  frames
    gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5,5), 0 )
    # here i would add the region of interest to count the single lane cars
    height, width = blur.shape
    print(height, width)
    # thresh_value = cv2.getTrackbarPos('thresh', 'trackbar')
    _, threshold = cv2.threshold(blur, 23, 255, cv2.THRESH_BINARY)
    dilated = cv2.dilate(threshold, (1,1), iterations=1)
    contours, _, = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    detections = []
    # DRAWING RECTANGLE BOX (Bounding Box)
    for contour in contours:
        (x,y,w,h) = cv2.boundingRect(contour)
        if cv2.contourArea(contour) <300:
            continue
        detections.append([x,y,w,h])
    boxes_ids = tracker.update(detections)
    for box_id in boxes_ids:
        x,y,w,h,id = box_id
        cv2.putText(frame1, str(id),(x,y-15),  cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,0,255), 2)
        cv2.rectangle(frame1, (x,y),(x+w, y+h), (0,255,0), 2)
        cv2.imshow('frame',frame1)
    frame1 = frame2
    ret, frame2 = cap.read()
    key = cv2.waitKey(30)
    if key == ord('q):
        break
cv2.destroyAllWindows()

cv2.absdiff 此方法用于获取两帧之间的绝对差。

得到帧差后将差值转换为灰度,然后应用阈值和轮廓检测。

找到的轮廓是所有运动物体的轮廓

为了避免所有的噪音,我们只采用那些尺寸大于 300 的轮廓。

boxes_ids 包含 (x,y,w,h,id)。

cv2.putText 用于在框架上写入 Id。

cv2.rectange() 用于绘制边界框。

输出:车辆计数器系统

结论

在本文中,我们讨论了对象跟踪的概念和对象跟踪的用例,即车辆计数器。

我们讨论了对象跟踪的一些应用,并讨论了质心跟踪算法中涉及的步骤,并将其用于车辆计数。

基于深度学习的对象跟踪算法(如用于 YOLO 对象检测的 DEEP SORT 算法)在我们的案例中执行得更准确。

到此这篇关于Python+OpenCV编写车辆计数器系统的文章就介绍到这了,更多相关Python OpenCV车辆计数内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯