文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

什么是DefakeHop技术

2023-06-17 07:44

关注

这篇文章主要讲解了“什么是DefakeHop技术”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“什么是DefakeHop技术”吧!

深度检测:用DefakeHop检测Deepfake

ARL研究人员Suya  You博士和Shuowen(Sean)Hu博士指出,深度伪造是人工智能合成的、超现实的视频内容,伪造某人的言行。大多数最新的深度伪造视频检测和媒体取证方法都是基于深度学习的,而深度学习在健壮性、可伸缩性和可移植性方面具有许多固有的弱点。

You博士表示:“由于生成神经网络的发展,AI驱动的深度伪造迅速地发展,以至于缺乏可靠的技术来检测和防御。”“我们迫切需要另辟蹊径,找到新的方法来理解深度伪造惊人性能背后的机制,并在坚实的理论支持下开发出有效的防御解决方案。”

通过将团队成员的经验与机器学习,信号分析和计算机视觉相结合,研究人员开发了一种创新的理论和数学框架——连续子空间学习(SSL),这是一种创新的神经网络体系结构。研究人员指出,SSL是DefakeHop的关键创新。

Kuo指出:“SSL是从信号转换理论发展而来的用于神经网络架构的全新数学框架。”“它与传统方法完全不同,它提供了一种新的信号表示和过程,其中涉及级联的多个变换矩阵。它非常适合具有短、中和远程协方差结构的高维数据。SSL在其设计中就融合了这种特性。它是一个完整的数据驱动的无监督框架,为图像处理和理解诸如面部生物特征识别等任务提供了全新的工具。”

You指出,目前大多数用于深度伪造视频检测和媒体取证的最新技术都是基于深度学习机制的。

DefakeHop大幅领先业界先进水平

研究人员认为,DefakeHop的性能大幅领先目前业界最先进的技术,主要表现为以下四点:

You教授指出:

这项研究通过引入和研究一种创新的机器学习理论及其应用于智能感知、表示和处理的计算算法,为美国陆军和实验室的AI和ML研究工作提供了支持。

我们希望未来的士兵在战场上能够携带体积轻巧的智能视觉设备。今天的机器学习解决方案对特定的数据环境过于敏感。当以不同的设置获取数据时,需要对网络进行重新训练,这在嵌入式系统中很难进行。

目前开发的解决方案具备许多理想的特性,包括较小的模型尺寸,需要的训练数据不多,训练复杂度低,并且能够处理低分辨率输入的图像。这是一个足以导致改变(现代战争)游戏规则的解决方案,有望在未来陆军中得到广泛应用。

解决了数个面部生物识别的难题

研究人员成功地将SSL原理应用到解决多种面部生物识别以及通用的场景理解问题上。结合DefakeHop的工作,他们开发了一种新颖的方法,即基于SSL原理的FaceFop,以解决在低图像质量和低分辨率的具有挑战性的环境下进行问题识别和面部分类的难题。

据悉,该团队将继续为面部生物特征识别和通用场景理解(例如目标检测、识别和语义场景理解)开发创新的解决方案。

Hu教授表示:“我们都看到了人工智能对社会的重大影响,有好的一面也有阴暗的一面,但不可否认的是人工智能正在改变很多事情。”“深度伪造就是一个负面的例子。过去数十年中,娱乐业已经为我们展示了计算机可以生成以假乱真的,高度复杂的视觉效果,如今人工智能和机器学习的最新技术极大地降低了内容伪造的技术门槛,相关工具也极容易获取。”

最后,研究团队认为,深度伪造技术对军事和日常生活都有影响(威胁),而在对抗深度伪造的研究领域,DefakeHop方案相比现有技术有着显著优势,为人工智能、计算机视觉、智能场景理解和面部生物特征识别等人工智能领域的研究提供了全新的范型和知识。

感谢各位的阅读,以上就是“什么是DefakeHop技术”的内容了,经过本文的学习后,相信大家对什么是DefakeHop技术这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯